Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3236, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270534

RESUMO

Excessive TGF-ß signaling and mitochondrial dysfunction fuel chronic kidney disease (CKD) progression. However, inhibiting TGF-ß failed to impede CKD in humans. The proximal tubule (PT), the most vulnerable renal segment, is packed with giant mitochondria and injured PT is pivotal in CKD progression. How TGF-ß signaling affects PT mitochondria in CKD remained unknown. Here, we combine spatial transcriptomics and bulk RNAseq with biochemical analyses to depict the role of TGF-ß signaling on PT mitochondrial homeostasis and tubulo-interstitial interactions in CKD. Male mice carrying specific deletion of Tgfbr2 in the PT have increased mitochondrial injury and exacerbated Th1 immune response in the aristolochic acid model of CKD, partly, through impaired complex I expression and mitochondrial quality control associated with a metabolic rewiring toward aerobic glycolysis in the PT cells. Injured S3T2 PT cells are identified as the main mediators of the maladaptive macrophage/dendritic cell activation in the absence of Tgfbr2. snRNAseq database analyses confirm decreased TGF-ß receptors and a metabolic deregulation in the PT of CKD patients. This study describes the role of TGF-ß signaling in PT mitochondrial homeostasis and inflammation in CKD, suggesting potential therapeutic targets that might be used to mitigate CKD progression.


Assuntos
Insuficiência Renal Crônica , Transdução de Sinais , Humanos , Masculino , Camundongos , Animais , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais/fisiologia , Insuficiência Renal Crônica/complicações , Rim/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Mitocôndrias/metabolismo , Inflamação/metabolismo , Fibrose
2.
Pflugers Arch ; 474(8): 783-797, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750861

RESUMO

Renal erythropoietin (Epo)-producing (REP) cells represent a rare and incompletely understood cell type. REP cells are fibroblast-like cells located in close proximity to blood vessels and tubules of the corticomedullary border region. Epo mRNA in REP cells is produced in a pronounced "on-off" mode, showing transient transcriptional bursts upon exposure to hypoxia. In contrast to "ordinary" fibroblasts, REP cells do not proliferate ex vivo, cease to produce Epo, and lose their identity following immortalization and prolonged in vitro culture, consistent with the loss of Epo production following REP cell proliferation during tissue remodelling in chronic kidney disease. Because Epo protein is usually not detectable in kidney tissue, and Epo mRNA is only transiently induced under hypoxic conditions, transgenic mouse models have been developed to permanently label REP cell precursors, active Epo producers, and inactive descendants. Future single-cell analyses of the renal stromal compartment will identify novel characteristic markers of tagged REP cells, which will provide novel insights into the regulation of Epo expression in this unique cell type.


Assuntos
Eritropoetina , Insuficiência Renal Crônica , Animais , Eritropoetina/metabolismo , Hipóxia/metabolismo , Rim/metabolismo , Camundongos , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/metabolismo
3.
Am J Physiol Renal Physiol ; 317(5): F1201-F1210, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461347

RESUMO

Tuberous sclerosis complex 2 (TSC2), or tuberin, is a pivotal regulator of the mechanistic target of rapamycin signaling pathway that controls cell survival, proliferation, growth, and migration. Loss of Tsc2 function manifests in organ-specific consequences, the mechanisms of which remain incompletely understood. Recent single cell analysis of the kidney has identified ATP-binding cassette G2 (Abcg2) expression in renal proximal tubules of adult mice as well as a in a novel cell population. The impact in adult kidney of Tsc2 knockdown in the Abcg2-expressing lineage has not been evaluated. We engineered an inducible system in which expression of truncated Tsc2, lacking exons 36-37 with an intact 3' region and polycystin 1, is driven by Abcg2. Here, we demonstrate that selective expression of Tsc2fl36-37 in the Abcg2pos lineage drives recombination in proximal tubule epithelial and rare perivascular mesenchymal cells, which results in progressive proximal tubule injury, impaired kidney function, formation of cystic lesions, and fibrosis in adult mice. These data illustrate the critical importance of Tsc2 function in the Abcg2-expressing proximal tubule epithelium and mesenchyme during the development of cystic lesions and remodeling of kidney parenchyma.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Fibrose/patologia , Doenças Renais Policísticas/patologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linhagem da Célula , Feminino , Fibrose/genética , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Miofibroblastos/fisiologia , Doenças Renais Policísticas/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
4.
JCI Insight ; 3(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385721

RESUMO

TGF-ß signals through a receptor complex composed of 2 type I and 2 type II (TGF-ßRII) subunits. We investigated the role of macrophage TGF-ß signaling in fibrosis after AKI in mice with selective monocyte/macrophage TGF-ßRII deletion (macrophage TGF-ßRII-/- mice). Four weeks after injury, renal TGF-ß1 expression and fibrosis were higher in WT mice than macrophage TGF-ßRII-/- mice, which had decreased renal macrophages. The in vitro chemotactic response to f-Met-Leu-Phe was comparable between bone marrow-derived monocytes (BMMs) from WT and macrophage TGF-ßRII-/- mice, but TGF-ßRII-/- BMMs did not respond to TGF-ß. We then implanted Matrigel plugs suffused with either f-Met-Leu-Phe or TGF-ß1 into WT or macrophage TGF-ßRII-/- mice. After 6 days, f-Met-Leu-Phe induced similar macrophage infiltration into the Matrigel plugs of WT and macrophage TGF-ßRII-/- mice, but TGF-ß induced infiltration only in WT mice. We further determined the number of labeled WT or TGF-ßRII-/- BMMs infiltrating into WT kidneys 20 days after ischemic injury. There were more labeled WT BMMs than TGF-ßRII-/- BMMs. Therefore, macrophage TGF-ßRII deletion protects against the development of tubulointerstitial fibrosis following severe ischemic renal injury. Chemoattraction of macrophages to the injured kidney through a TGF-ß/TGF-ßRII axis is a heretofore undescribed mechanism by which TGF-ß can mediate renal fibrosis during progressive renal injury.


Assuntos
Injúria Renal Aguda/patologia , Fibrose/metabolismo , Rim/metabolismo , Macrófagos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Injúria Renal Aguda/complicações , Animais , Células da Medula Óssea/citologia , Fatores Quimiotáticos/metabolismo , Fatores Quimiotáticos/fisiologia , Fibrose/etiologia , Rim/patologia , Masculino , Camundongos , Camundongos Transgênicos/metabolismo , Monócitos/metabolismo , N-Formilmetionina Leucil-Fenilalanina/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
5.
J Am Soc Nephrol ; 26(7): 1608-18, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25349200

RESUMO

Proteinuria and hyperphosphatemia are cardiovascular risk factors independent of GFR. We hypothesized that proteinuria induces relative phosphate retention via increased proximal tubule phosphate reabsorption. To test the clinical relevance of this hypothesis, we studied phosphate handling in nephrotic children and patients with CKD. Plasma fibroblast growth factor 23 (FGF-23) concentration, plasma phosphate concentration, and tubular reabsorption of phosphate increased during the proteinuric phase compared with the remission phase in nephrotic children. Cross-sectional analysis of a cohort of 1738 patients with CKD showed that albuminuria≥300 mg/24 hours is predictive of higher phosphate levels, independent of GFR and other confounding factors. Albuminuric patients also displayed higher plasma FGF-23 and parathyroid hormone levels. To understand the molecular mechanisms underlying these observations, we induced glomerular proteinuria in two animal models. Rats with puromycin-aminonucleoside-induced nephrotic proteinuria displayed higher renal protein expression of the sodium-phosphate co-transporter NaPi-IIa, lower renal Klotho protein expression, and decreased phosphorylation of FGF receptor substrate 2α, a major FGF-23 receptor substrate. These findings were confirmed in transgenic mice that develop nephrotic-range proteinuria resulting from podocyte depletion. In vitro, albumin did not directly alter phosphate uptake in cultured proximal tubule OK cells. In conclusion, we show that proteinuria increases plasma phosphate concentration independent of GFR. This effect relies on increased proximal tubule NaPi-IIa expression secondary to decreased FGF-23 biologic activity. Proteinuria induces elevation of both plasma phosphate and FGF-23 concentrations, potentially contributing to cardiovascular disease.


Assuntos
Benzimidazóis/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Túbulos Renais Proximais/metabolismo , Síndrome Nefrótica/metabolismo , Fosfatos/sangue , Proteinúria/fisiopatologia , Tetrazóis/farmacologia , Adulto , Albuminúria/metabolismo , Albuminúria/fisiopatologia , Análise de Variância , Animais , Compostos de Bifenilo , Western Blotting , Criança , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Síndrome Nefrótica/fisiopatologia , Hormônio Paratireóideo/metabolismo , Estudos Prospectivos , Proteinúria/metabolismo , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Urinálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...