Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Physiol Biochem ; : 1-9, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712991

RESUMO

INTRODUCTION: Sirtuin1 (SIRT1) plays a crucial role in the pathophysiology of non-alcoholic fatty liver disease. We investigated the mechanistic role of galbanic acid (Gal) as a regulator of SIRT1 in silico and in vitro. METHODS: HepG2 cells were treated with Gal in the presence or absence of EX-527, a SIRT1-specific inhibitor, for 24 h. Sirtuin1 gene and protein expression were measured by RT-PCR and Western blotting, respectively. It has been docked to the allosteric reign of SIRT1 (PDB ID: 4ZZJ) to study the effect of Gal on SIRT1, and then the protein and complex molecular dynamic (MD) simulations had been studied in 100 ns. RESULTS: The semi-quantitative results of Oil red (p < .03) and TG level (p < .009) showed a significant reduction in lipid accumulation by treatment with Gal. Also, a significant increase was observed in the gene and protein expression of SIRT1 (p < .05). MD studies have shown that the average root mean square deviation (RMSD) was about 0.51 Å for protein structure and 0.66 Å for the complex. The average of radius of gyration (Rg) is 2.33 and 2.32 Å for protein and complex, respectively, and the pattern of root mean square fluctuation (RMSF) was almost similar. CONCLUSION: Computational studies show that Gal can be a great candidate to use as a SIRT1 ligand because it does not interfere with the structure of the protein, and other experimental studies showed that Gal treatment with SIRT1 inhibitor increases fat accumulation in HepG2 cells.

2.
Horm Mol Biol Clin Investig ; 44(3): 237-241, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995990

RESUMO

OBJECTIVES: Prostate cancer (PCa) is one of the most common cancers in men with high mortality rate which is a major concern for men's health. However, the molecular mechanisms remain poorly understood. miR-93 is an important oncogene which may have important function in prostate cancer.So, this study aimed to predict that encomir-93 mimic transfection on the expression of miR-93 and PSA and AR in prostate cancer LNcap cell line. METHODS: Lymph node carcinoma of the prostate (LNCaP) was cultured and then miR-93 mimics was designed, synthesized and the transfected to LNCaP. The expression level of prostate-specific antigen (PSA) and androgen receptor (AR) was determined via Real-time PCR after treated with 15 pmol of miR-93 mimics. RESULTS: miR-93 mimic transfection led to significant increase in PSA and AR expression in comparison with control group (p≤0.05). CONCLUSIONS: The miR-93 and its target genes has important role in PCa progression via enhancement in PSA and AR expression. Further research on the function of the miR-93 and its target genes in tumorgenesis and progression PCa could be helpful for the treatment of prostate cancer.


Assuntos
MicroRNAs , Neoplasias da Próstata , Humanos , Masculino , Linhagem Celular Tumoral , MicroRNAs/genética , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transfecção
3.
Iran J Basic Med Sci ; 25(11): 1373-1381, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36474574

RESUMO

Objectives: Signal transduction of mitogen-activated protein kinases (MAPKs) is activated during ischemia. In this study, c-Jun N-terminal Kinase (JNK) and p38 MAPK (p38) gene and protein expression were evaluated as two members of the MAPK family during liver ischemia-reperfusion in rats. Materials and Methods: Thirty-two male Wistar rats were divided into four groups of eight: Vehicle, ischemia-reperfusion (IR), ischemia-reperfusion+silibinin (IR+SILI), and SILI. The IR and IR+SILI groups differed from the other two groups in that they underwent one hour of ischemia followed by three hr of reperfusion. The Vehicle and IR groups received normal saline while the SILI and IR+SILI groups were treated with silibinin (50 mg/kg). At the end of the reperfusion time, blood and ischemic liver tissue were collected for further experiments. Results: The expression of JNK and p38 gene, the amount of serum hepatic injury indices, and malondialdehyde (MDA) in the IR group increased significantly compared with the vehicle group. The JNK and p38 gene expression decreased significantly in the IR + SILI group compared with the IR group. Glutathione peroxidase (GPx) and total antioxidant capacity (TAC) levels decreased in the IR group while increasing in the IR+SILI group. Histological examination showed that silibinin significantly reduced the severity of hepatocyte degradation. Western blot results were completely consistent with real-time PCR results. Conclusion: The possible pathways of the protective effect of silibinin against hepatic ischemia damages is to reduce the expression of the p38 and JNK gene and protein.

4.
Gastroenterol Hepatol Bed Bench ; 14(3): 267-275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221267

RESUMO

AIM: This research examined silibinin's anti-inflammatory outcomes on the NOD-like receptor protein-3 (NLRP3) and NF-κB gene expression, which plays a notable role in inciting inflammatory pathways. BACKGROUND: Hepatic ischemia-reperfusion (I/R) is a common phenomenon in many clinical cases, including liver surgery and transplantation. Inflammatory mediators are vital contributors to the expansion of hepatic damage after I/R injury (I/RI), and therefore, targeting inflammation is a considerable candidate for the management of hepatic I/RI and its complications. METHODS: Thirty-two male Wistar rats were divided equally into four groups: 1) Control (Vehicle) group, in which rats underwent laparotomy and received normal saline; 2) SILI group, in which rats underwent laparotomy, and 30 mg/kg silibinin was injected intraperitoneal (IP); 3) I/R group, in which rats underwent I/R and received normal saline; and 4) I/R + SILI group, who encountered I/R after laparotomy and received silibinin. After one hour of ischemia and three hours of reperfusion, blood and liver tissue samples were assembled for future biochemical, histological, and gene expression studies. RESULTS: In vivo analysis attested that serum AST and ALT activities were significantly lessened by silibinin in the SILI + I/R group (p <0.001). Silibinin ameliorated inflammatory liver tissue injuries, including neutrophil and macrophage infiltration, hepatocyte degeneration, cytoplasmic vacuolation, vascular endothelial damages, and sinusoid dilation observed in the I/R group. During I/R, NLRP3 and NF-κB gene expression showed a significant increment compared to the control group (p <0.001), which could be alleviated by silibinin (p <0.01). CONCLUSION: The results evidence that adjusting the expression of NLRP3 and NF-κB genes during I/R is probably one of the mechanisms of the anti-inflammatory effects of silibinin.

5.
Iran J Basic Med Sci ; 24(3): 267-279, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33995938

RESUMO

Diabetic retinopathy (DR) is ocular microvascular complications of diabetes mellitus. Along with the increasing prevalence of diabetes worldwide, DR has come into the major cause of human blindness. Several studies have demonstrated the important roles of the expression alteration in the proteins contributed to vascular dysfunction during DR, especially vascular endothelial growth factor (VEGF). However, there is a need for further mechanistic research in this context to design new therapeutic and diagnostic programs. MicroRNAs (miRNAs, miRs) have been introduced as key controllers of gene expression in a variety of biological processes including differentiation, proliferation, and metabolism. Altered expression of miRNAs during DR development indicates a close relationship between these regulatory molecules and DR through regulating gene expressions. This review discusses and updates the functions of miRNA-dependent pathways and key roles of VEGF in the DR, which may increase our understanding and ability to target these small but important molecules to efficiently improve therapeutic and diagnostic approaches.

6.
Mol Biol Rep ; 47(5): 3271-3280, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32249375

RESUMO

The mitochondrial damage has a pivotal role in triggering apoptosis and cell death. This study assessed the effect of silibinin on optical atrophy-1 (OPA1) and mitofusin-1 (MFN1) gene expression in liver tissue during hepatic warm ischemia-reperfusion (IR). Four groups of rats, eight rats each were designed: Vehicle: the rats received normal saline and encountered to laparotomy, Sili: silibinin (60 mg/kg) was administered to animals, IR: the rats received the normal saline and insulted by liver IR procedure, and IR + Sili: silibinin was injected to rats. All groups were subjected to the same process of injection of the solvent or silibinin (30 min before laparotomy or ischemia and immediately after the reperfusion), intraperitoneally (IP). After 3 h of reperfusion, blood and liver tissue samples were collected for future examinations. Our results showed no significant differences between the Vehicle and Sili groups in all assessed parameters. In IR + Sili, the increased serum levels of AST and ALT in comparison with the control group were markedly reduced by silibinin treatment. Silibinin lowered the elevated expression of OPA1 and MFN1 mRNAs in the IR group. Histology revealed silibinin could decline tissue degeneration compared to the IR group. Electron microscopy of control and silibinin groups showed no fusion of mitochondria and tissue degradation both of which were observed in the IR group. The extent of tissue destruction and mitochondrial fusion decreased significantly with silibinin treatment. Silibinin has a protective effect on liver cells against IR induced injuries by preserving mitochondrial membrane.


Assuntos
GTP Fosfo-Hidrolases/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Silibina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Isquemia/patologia , Fígado/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos , Ratos Wistar , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Silibina/metabolismo
7.
Diabetes Res Clin Pract ; 161: 108067, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32044348

RESUMO

Oxidant-antioxidant imbalance is involved in the etiology of different diseases, including cardiovascular diseases (CVDs), liver disorders, kidney diseases, cancers and diabetes mellitus. Antioxidant enzymes play a key role in striking an oxidant-antioxidant balance. Moreover, paraoxonase 1 (PON1) is an antioxidant enzyme that binds with high-density lipoprotein (HDL) in the circulation, and antioxidant and antiaterogenic properties of this lipoprotein are significantly associated with PON1. Research suggests PON1 contributes to the pathogenesis of certain human diseases such as type 2 diabetes (T2D). The association between PON1 and T2D appear to be reciprocal so that the disease significantly decreases PON1 levels and in turn, the genetics of PON1 may have a role the risk of susceptibility to T2D. Several factors that reduce the activity and concentration of PON1 in patients with T2D include increased glycation and loss-of-function polymorphisms. The genotypic and phenotypic evaluations of PON1 are therefore crucial for assessing the risk of cardiovascular complications in these patients, and strategies for increasing or restoring PON1 levels are useful for reducing or preventing their cardiovascular complications as their main cause of mortality. The present review aimed at discussing and emphasizing the key role of PON1 in T2D as a silent and dangerous disease.


Assuntos
Antioxidantes/uso terapêutico , Arildialquilfosfatase/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antioxidantes/farmacologia , Arildialquilfosfatase/farmacologia , Doenças Cardiovasculares/etiologia , Diabetes Mellitus Tipo 2/complicações , Feminino , Genótipo , Humanos , Masculino , Fenótipo
8.
Iran J Basic Med Sci ; 22(9): 968-976, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31807239

RESUMO

Ischemia-reperfusion injuries (IRI) occur in different clinical conditions such as stroke, trauma, organ transplantation, and so on. Ischemia damages mainly arise from oxygen depletion in tissues. The lack of oxygen as the last acceptor of electron in the respiratory chain causes a decrease in ATP production and eventually leads to disruption of membrane transport, acidosis, cellular edema and membrane distortion of organelles, and cells. Reperfusion can intensify ischemic injuries by the infiltration of inflammatory cells and also oxygen and calcium overloading. Since the tissue antioxidant contents decreased due to increased generation of reactive oxygen species (ROS) during IRI, the application of antioxidants is considered an appropriate strategy to ameliorate IRI. Silymarin constitutes about 70-80% of silybum marianum dry extract and is known as a strong free radical scavenger with anti-inflammatory properties. In several studies, silibinin as a major component of Silymarin could provide protective effects in various tissue IRI by different mechanisms such as scavenging free radicals, decreasing inflammatory cytokines, inhibiting cellular death, and increasing the expression of antioxidant enzymes. To clarify functional mechanisms, the present article evaluates studies about silymarin effects in different tissues IRI.

9.
J Cell Biochem ; 120(8): 12141-12155, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30957271

RESUMO

MicroRNA (miRNA)-dependent pathways are one of the newest gene regulation mechanisms in various diseases, particularly in cancers. miRNAs are endogenous noncoding RNAs with about 18 to 25 nucleotide length, which can regulate the expression of at least 60% of human total genome posttranscriptionally. Quercetin is the most abundant flavonoid in a variety of fruits, flowers, and medical herbs, known as a strong free radical scavenger that could show antioxidant, anti-inflammatory, and antitumor activities. Recent studies also reported its strong impact on various miRNA expressions in different abnormalities. In this review, we aimed to summarize the studies focused on the effects of quercetin on different miRNA expressions to more clear the main possible mechanisms of quercetin influences and introduce it as a beneficial agent for regulation of miRNAs in various biological directions.


Assuntos
MicroRNAs/genética , Quercetina/farmacologia , Disponibilidade Biológica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/biossíntese , MicroRNAs/metabolismo , Neoplasias/genética , Quercetina/química
10.
Iran J Basic Med Sci ; 22(7): 789-796, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32373301

RESUMO

OBJECTIVES: Liver ischemia-reperfusion injuries (I/RI) are typically the main causes of liver dysfunction after various types of liver surgery especially liver transplantation. Radical components are the major causes of such direct injuries. We aimed to determine the beneficial effects of silibinin, a potent radical scavenger on liver I/RI. MATERIALS AND METHODS: Thirty-two rats were divided into 4 groups. Group I: VEHICLE, the rats underwent laparotomy and received DMSO, group II: SILI, laparotomy was done and silibinin was administered. Group III: I/R, the rats received DMSO and were subjected to a liver I/R procedure and group IV: I/R+SILI, the animals underwent the I/R procedure and received silibinin. After 1 hr of ischemia followed by 3 hr reperfusion, blood was collected to evaluate the serum marker of liver injuries. Hepatic tissue was harvested to investigate glycogen content, histological changes, and vasoregulatory gene expression. RESULTS: Results showed that serum AST, ALT, LDH, GGT, ALP, and hyaluronic acid (HA) increased significantly in I/R group compared with the VEHICLE group. Silibinin reduced this elevation except for GGT. Silibinin inhibited hepatocyte vacuolization and degeneration, endothelium damages, sinusoidal congestion and inflammation, and glycogen depletion during I/R. ET-1 mRNA was overproduced in the I/R group compared with the VEHICLE group which was decreased by silibinin. KLF2 and eNOS expression was reduced during I/R compared with the VEHICLE group. Silibinin elevated KLF2 expression but had no meaningful effect on eNOS expression. CONCLUSION: Silibinin protected the liver from I/RI. Silibinin could improve liver circulation by preventing sinusoidal congestion, inflammation, and perhaps modification of the vasoregulatory gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...