Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618565

RESUMO

Background: Greenhouse vertical farming under natural sunlight is an alternative farming technique that grows crops in a stacking column and extends in a vertical direction. Sunlight availability is one of the crucial factors for crop development in vertical farming. Therefore, this investigation aimed to examine the effect of sunlight availability on lettuce growth and yields at different levels of vertical shelves. Methods: Six shelves were constructed with three levels: upper, middle and lower levels. Lettuces (Lactuca sativa L.) as 'Baby Cos' and 'Green Oak' at 14 days after sowing were planted on the three levels. The photosynthetic photon flux density (PPFD) was recorded, and the PPFD values were then converted to the daily light integral (DLI). Plant height and canopy width were measured three times at 14, 21 and 28 days after transplanting. At maturity, fresh weight (FW) was directly monitored after harvest. Results: The results showed that the highest PPFD and DLI values were found at the upper level (PPFD 697 µmol m-2 s-1 and DLI 29 mol m-2 d-1) in comparison to the middle (PPFD 391 µmol m-2 s-1 and DLI 16 mol m-2 d-1) and lower (PPFD 322 µmol m-2 s-1 and DLI 13 mol m-2 d-1) levels. The lowest plant height and canopy width values were observed on the upper levels for both lettuce varieties during the three measurement dates. The middle ('Baby Cos' = 123.8 g plant-1 and 'Green Oak' = 190.7 g plant-1) and lower ('Baby Cos' = 92.9 g plant-1 and 'Green Oak' = 203.7 g plant-1) levels had the higher values of FW in comparison to the upper level ('Baby Cos' = 84.5 g plant-1 and 'Green Oak' = 97.3 g plant-1). The values of light use efficiency (LUE) showed an increased trend from the upper to lower levels in both varieties, with values of 'Baby Cos' of 0.10 g mol-1 in the upper level, 0.28 g mol-1 in the middle level and 0.26 g mol-1 in the lower level and 'Green Oak' of 0.12 g mol-1 in the upper level, 0.44 g mol-1 in the middle level and 0.57 g mol-1 in the lower level. The findings of the study indicated the viability of utilizing vertical shelves for lettuce production.


Assuntos
Agricultura , Lactuca , Humanos , Lactente , Tailândia , Fazendas , Produtos Agrícolas
2.
MethodsX ; 12: 102566, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38287962

RESUMO

The utilization of a non-destructive SPAD-502 chlorophyll meter, which enables the measurement of nitrogen status in plant leaves, has gained popularity in agronomic crops. Its application to horticultural crops like coffee remains relatively uncommon. The device provides quick and real-time measurements, helping to provide on-time nitrogen fertilizer to coffee plants before deficiency signs occur. Coffee leaves are characterized by thick and waxy leaves, together with many layers of tree crown. Therefore, the objective of this study was to develop a method for measuring nitrogen levels in coffee plants using the SPAD-502 Chlorophyll meter for an appropriate nitrogen fertilizer application rate in Arabica coffee plants. •Coffee trees were separated into upper, middle and lower levels. Data on SPAD values and total nitrogen were analyzed.•Pearson Correlation Coefficient (R), Coefficient of Determination (R2) and linear regression were calculated for different three levels of both SPAD-502 and total nitrogen values.•The results revealed a strong correlation (R2 = 0.63) between the SPAD readings of coffee leaves obtained from the upper canopy and their nitrogen content. These findings can provide a good concept of which coffee crown level will be a better part for measuring N content using a SPAD-502 Chlorophyll meter.

3.
Heliyon ; 9(12): e22988, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125514

RESUMO

Land conversion critically affects soil physiochemical and biological properties, yet very little remains clear about the impact of forest conversion on the N pool and related microbial N transformations. Therefore, this study aimed to examine the dynamics of soil N availability following forest conversion into the different coffee cropping systems, and explore the mechanisms behind these dynamics from the microbial N transformation. Disturbed soil samples from two depths (0-20 and 20-40 cm) were collected from four land uses consisting of three different coffee cropping systems (coffee monocultures (C), coffee agroforestry (FC), coffee associated with persimmon (Diospyros kaki L.) (CH)) converted from natural forest and adjacent natural forest (F) in northern Thailand. The soil labile N pools (including ammonium (NH4+), nitrate (NO3-), inorganic N (IN), dissolved organic N (DON) contents and microbial biomass N (MBN)) were measured, as well as the soil total N (STN) content. Soil N transformation rates, including net N mineralization, nitrification, and immobilization, were determined using a laboratory incubation experiment. The results showed that the forest conversion to coffee agroforestry significantly increased soil N content by 39.83 % in topsoil, but no significant difference was observed in C and CH soils as compared to F soil (p ≤ 0.05). The three labile N forms (NH4+, NO3- and DON content) were significantly higher under the C, FC and CH soils in both depths, while the coffee monoculture decreased the MBN content. The increases in soil IN, IN/DON and NO3-/NH4+ ratios used as an N availability indicator were positively associated with an increase in the N mineralization and nitrification processes following the forest conversion. Interestingly, the N immobilization processes in the F and FC soils were significantly higher than those in the C and CH soils, which indirectly regulated a decreased nitrification rate in F and FC soils in our study. With the exception of the FC soil, the nitrification/N immobilization ratios in the C (4.95) and CH (4.08) soils were higher than those in the F (0.70) soil, indicating an increased N loss risk after forest conversion. Therefore, coffee agroforestry systems have the potential to be effective management strategies for improving soil nitrogen sequestration following forest conversion.

4.
PeerJ ; 11: e15530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334129

RESUMO

Background: As a method for sustainable agriculture, biofertilizers containing plant growth-promoting bacteria (PGPB) have been recommended as an alternative to chemical fertilizers. However, the short shelf-life of inoculants remains a limiting factor in the development of biofertilizer technology. The present study aimed to (i) evaluate the effectiveness of four different carriers (perlite, vermiculite, diatomite and coconut coir dust) on the shelf-life of S2-4a1 and R2-3b1 isolates over 60 days after inoculation and (ii) evaluate isolated bacteria as growth-promoting agents for coffee seedlings. Methods: The rhizosphere soil-isolated S2-4a1 and plant-tissue-isolated R2-3b1 were chosen based on their P and K-solubilizing capacities and their ability to produce IAA. To evaluate the alternative carriers, two selected isolates were inoculated with the four different carriers and incubated at 25 °C for 60 days. The bacterial survival, pH, and EC in each carrier were investigated. In addition, coconut coir dust inoculated with the selected isolates was applied to the soil in pots planted with coffee (Coffea arabica). At 90 days following application, variables such as biomass and total N, P, K, Ca, and Mg uptakes of coffee seedlings were examined. Results: The results showed that after 60 days of inoculation at 25 °C, the population of S2-4a1 and R2-3b1 in coconut coir dust carriers was 1.3 and 2.15 × 108 CFU g-1, respectively. However, there were no significant differences among carriers (P > 0.05). The results of the present study suggested that coconut coir dust can be used as an alternative carrier for S2-4a1 and R2-3b1 isolates. The significant differences in pH and EC were observed by different carriers (P < 0.01) after inoculation with both bacterial isolates. However, pH and EC declined significantly only with coconut coir dust during the incubation period. In addition, coconut coir dust-based bioformulations of both S2-4a1 and R2-3b1 enhanced plant growth and nutrient uptake (P, K, Ca, Mg), providing evidence that isolated bacteria possess additional growth-promoting properties.


Assuntos
Poeira , Plântula , Poeira/análise , Plântula/química , Cocos , Café , Solo/química , Bactérias
5.
Fish Shellfish Immunol ; 128: 604-611, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35995373

RESUMO

This study investigated the effects of dietary supplementation with anthocyanin extracted from black rice bran (AR) on the growth rate, immunological response, and expression of immune and antioxidant genes in Nile tilapia raised in an indoor biofloc system. A total of 300 Nile tilapia fingerlings (15.14 ± 0.032 g) were maintained in 150 L tanks and acclimatized for two weeks. Five experimental AR diets (0, 1, 2, 4, and 8 g kg-1) with various anthocyanin doses were used to feed the fish. We observed that the growth and feed utilization of fish fed with different dietary AR levels increased significantly after eight weeks (p < 0.05). In addition, the serum immunity of fish fed AR diets was much greater than that of those fed non-AR diets (p < 0.05). However, there were little or no difference in between fish fed AR enriched diets and the control AR-free diet (p > 0.05). After eight weeks, fish fed AR-supplemented diets had significantly higher mRNA transcript levels in immune (interleukin [IL]-1, IL-8, and liposaccharide-binding protein [LBP]) and antioxidant (glutathione transferase-alpha [GST-α] and glutathione reductase [GSR]) genes compared to control fish fed the AR-free diet, with the greatest enhancement of mRNA transcript levels (in the case of IL-8 by up to about 5.8-fold) in the 4 g kg-1 AR diet. These findings suggest that dietary inclusion of AR extract from black rice bran at 4-8 g kg-1 could function as a herbal immunostimulant to enhance growth performance, feed consumption, and immunity in Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Oryza , Adjuvantes Imunológicos/metabolismo , Ração Animal/análise , Animais , Antocianinas/metabolismo , Antioxidantes/metabolismo , Aquicultura , Dieta/veterinária , Suplementos Nutricionais , Expressão Gênica , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Interleucina-8 , Oryza/genética , Extratos Vegetais/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...