Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38675175

RESUMO

Diabetic Parkinson's disease (DP) is a progressive neurodegenerative disease with metabolic syndrome that is increasing worldwide. Emerging research suggests that cannabidiol (CBD) is a neuropharmacological compound that acts against this disease, especially CBD in nano-formulation. The safety of cannabidiol lipid nanoparticles (CBD-LNP) was evaluated by assessing in vitro cytotoxicity in neurons and therapeutic outcomes in a DP animal model, including metabolic parameters and histopathology. CBD-LNPs were fabricated by using a microfluidization technique and showed significantly lower cytotoxicity than the natural form of CBD. The DP rats were induced by streptozotocin followed by a 4-week injection of MPTP with a high-fat diet. Rats were treated orally with a vehicle, CBD, CBD-LNP, or levodopa for 4 weeks daily. As a result, vehicle-treated rats exhibited metabolic abnormalities, decreased striatal dopamine levels, and motor and memory deficits. CBD-LNP demonstrated reduced lipid profiles, enhanced insulin secretion, and restored dopamine levels compared to CBD in the natural form. CBD-LNP also had comparable efficacy to levodopa in ameliorating motor deficits and memory impairment in behavior tests. Interestingly, CBD-LNP presented migration of damaged neuronal cells in the hippocampus more than levodopa. These findings suggest that CBD-LNP holds promise as an intervention addressing both metabolic and neurodegenerative aspects of DP, offering a potential therapeutic strategy.

2.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611965

RESUMO

After a proofreading check, some experimental data were inconsistent with the supplementary information in the original publication [...].

3.
PeerJ ; 12: e17033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435986

RESUMO

Stress profoundly impacts various aspects of both physical and psychological well-being. Our previous study demonstrated that venlafaxine (Vlx) and synbiotic (Syn) treatment attenuated learned fear-like behavior and recognition memory impairment in immobilized-stressed rats. In this study, we further investigated the physical, behavior, and cellular mechanisms underlying the effects of Syn and/or Vlx treatment on brain and intestinal functions in stressed rats. Adult male Wistar rats, aged 8 weeks old were subjected to 14 days of immobilization stress showed a decrease in body weight gain and food intake as well as an increase in water consumption, urinary corticosterone levels, and adrenal gland weight. Supplementation of Syn and/or Vlx in stressed rats resulted in mitigation of weight loss, restoration of normal food and fluid intake, and normalization of corticosterone levels. Behavioral analysis showed that treatment with Syn and/or Vlx enhanced depressive-like behaviors and improved spatial learning-memory impairment in stressed rats. Hippocampal dentate gyrus showed stress-induced neuronal cell death, which was attenuated by Syn and/or Vlx treatment. Stress-induced ileum inflammation and increased intestinal permeability were both effectively reduced by the supplementation of Syn. In addition, Syn and Vlx partly contributed to affecting the expression of the glial cell-derived neurotrophic factor in the hippocampus and intestines of stressed rats, suggesting particularly protective effects on both the gut barrier and the brain. This study highlights the intricate interplay between stress physiological responses in the brain and gut. Syn intervention alleviate stress-induced neuronal cell death and modulate depression- and memory impairment-like behaviors, and improve stress-induced gut barrier dysfunction which were similar to those of Vlx. These findings enhance our understanding of stress-related health conditions and suggest the synbiotic intervention may be a promising approach to ameliorate deleterious effects of stress on the gut-brain axis.


Assuntos
Corticosterona , Simbióticos , Masculino , Animais , Ratos , Ratos Wistar , Cloridrato de Venlafaxina/farmacologia , Cognição
4.
Sci Rep ; 14(1): 1904, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253627

RESUMO

Acanthus spp. have been documented in traditional Thai herbal medicine and are applicable for the treatment of inflamed skin with wound healing property. Nonetheless, the scientific evidence necessary to prove the herb's doctrine has not yet been revealed. Verbascoside-rich extracts of the herbal medicine A. ebracteatus Vahl., were therefore prepared. The extracts and verbascoside were examined for their wound healing abilities using a scratch assay with fibroblasts. The anti-inflammatory effect suppressing MMP-9 was assessed in cocultures of keratinocyte (HaCaT cells) and fibroblasts. The extracts significantly improved wound healing compared with the control (p < 0.001). The wound healing effect of the extracts significantly (p < 0.01) increased with increasing verbascoside content. It should be noted that the extract was significantly (p < 0.05) better than verbascoside at the same test concentration. The extracts were capable of protecting cocultures of HaCaT cells and fibroblasts from photodamage. The extracts significantly (p < 0.001) suppressed cellular MMP-9 secretion following UV exposure, showing a better effect than that of verbascoside (p < 0.01). A. ebracteatus extract is promising for wound healing and photoprotection, and a prominent source of verbascoside. Verbascoside-rich A. ebracteatus could be utilized for the development of innovative skin-care products.


Assuntos
Acanthaceae , Glucosídeos , Metaloproteinase 9 da Matriz , Polifenóis , Cicatrização , Fenóis/farmacologia , Extratos Vegetais/farmacologia
5.
Sci Rep ; 14(1): 2253, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279010

RESUMO

Tea (Camellia spp.) is an important medicinal herb. C. sinensis var. sinensis is the most studied tea variety due to its more preferred flavor than C. sinensis var. assamica (Assam tea), the less economic importance with more bitter variety. A bitter taste highlights its potential as a candidate source for tea catechins, the health beneficial actives applicable for ageing treatment. Nonetheless, indicative data for tea on UV-induced and senescent ageing remain unclarified. Assam tea extract (ATE) was prepared and standardized in terms of TPC, TFC and TTC. EGCG was HPLC quantified as the prime ATE catechin. In vitro antioxidant activity of ATE was exhibited with ABTS, DPPH and FRAP assays. ATE's cellular antioxidant activity was indicated in HDFs at a stronger degree than ascorbic acid. The photoaging protection of ATE was evidenced in a coculture of HaCaT cells and HDFs. ATE markedly suppressed UV-induced IL-6, IL-8, MMP-1 and MMP-9 expressions. The proficiency of ATE targeting on senescent ageing was demonstrated in an ex vivo human skin model, where IL-6 and MMP-1 expressions were suppressed, whilst hyaluronic acid and collagen syntheses were promoted. ATE was chemically stabled as indicated by the catechin contents and color parameters following 6 months storage under conditions recommended for topical product. ATE enriched in catechins warrants its applicability as a new generation of photoaging protectant agent promising for the prevention and treatment for senescent ageing. The findings indicate the proficiency of ATE for innovative anti-ageing agent.


Assuntos
Camellia sinensis , Catequina , Envelhecimento da Pele , Humanos , Chá/química , Camellia sinensis/química , Catequina/farmacologia , Catequina/química , Antioxidantes/farmacologia , Antioxidantes/análise , Metaloproteinase 1 da Matriz , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Interleucina-6 , Envelhecimento
6.
Int J Cosmet Sci ; 46(2): 162-174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37840342

RESUMO

OBJECTIVE: Rice (Oryza sativa) bran waxes, the by-products of rice bran oil manufacturing, are widely used as inactive components in several preparations. Nevertheless, the function of rice bran waxes against skin ageing has never been reported. This study aimed to investigate thermal property and fatty acid profile of rice bran waxes, including rice bran soft (RBS) and hard (RBH) waxes, and the activities against skin ageing in cultured skin cells. METHODS: Thermal property and fatty acid profile of rice bran waxes were analysed by differential scanning calorimetry and gas chromatography-mass spectrometry, respectively. The cytotoxicity assay of waxes was performed in B16F10 melanoma cells, human skin fibroblasts and co-culture cells of HaCaT cells and human skin fibroblasts. The non-cytotoxic concentrations of waxes were evaluated for their activities against skin ageing, including melanogenesis assay, antioxidant activity, collagen content analysis, matrix metalloproteinase-1 and matrix metalloproteinase-2 inhibitory assay and anti-inflammatory activity. RESULTS: Thermal property indicated the endotherm peaks with melting temperatures at 40.89 ± 0.27°C and 69.64 ± 0.34°C for RBS and RBH, respectively. The main fatty acids in RBS were oleic (31.68 ± 0.75%) and linoleic acids (27.19 ± 0.40%), whereas those in RBH were palmitic (36.24 ± 1.08%) and stearic acids (35.21 ± 4.51%). The cytotoxicity assay in single cells and co-culture cells showed the non-cytotoxicity of RBS (0.0001-1 mg/mL) and RBH (0.0001-0.1 mg/mL). The anti-skin ageing activities of 1 mg/mL RBS and 0.1 mg/mL RBH included the melanogenesis inhibition by suppression of tyrosinase and tyrosinase-related protein-2 enzymes, the antioxidant activity by cellular protection against cell damage and cell death, the collagen stimulation, the matrix metalloproteinase-1 and matrix metalloproteinase-2 suppression and the anti-inflammation. CONCLUSIONS: The study results suggest that RBS and RBH can potentially be applied as the functional ingredients in formulations against skin ageing as well as provide the superior benefit on skin moisturization.


OBJECTIF: Les cires de son de riz (Oryza sativa) et les sous­produits de la fabrication de l'huile de son de riz sont largement utilisées comme composants inactifs dans plusieurs préparations. Néanmoins, l'effet des cires de son de riz contre le vieillissement de la peau n'a jamais été rapporté. Cette étude visait à étudier les propriétés thermiques et le profil d'acides gras des cires de son de riz, y compris les cires dures et douces de son de riz, et les activités contre le vieillissement de la peau dans les cellules cutanées en culture. MÉTHODES: La propriété thermique et le profil d'acides gras des cires de son de riz ont été analysés par calorimétrie différentielle à balayage et chromatographie en phase gazeuse couplée spectrométrie de masse, respectivement. Le dosage de la cytotoxicité des cires a été réalisé sur des cellules de mélanome B16F10, des fibroblastes de peau humaine, et des cellules de co­culture de cellules HaCaT et des fibroblastes de peau humaine. Les concentrations non cytotoxiques des cires ont été évaluées pour leurs activités contre le vieillissement de la peau, y compris l'analyse de la mélanogenèse, l'activité antioxydante, l'analyse de la teneur en collagène, le test de l'inhibiteur de la métalloprotéinase matricielle­1 et de la métalloprotéinase matricielle­2 et l'activité anti­inflammatoire. RÉSULTATS: La propriété thermique indiquait des pics endothermes avec des températures de fusion à 40,89 ± 0,27 °C et 69,64 ± 0,34 °C pour les cires dures et douces de son de riz, respectivement. Les principaux acides gras des cires douces de son de riz étaient des acides oléiques (31,68 ± 0,75 %) et des acides linoléiques (27,19 ± 0,40 %), tandis que ceux des cires dures de son de riz étaient des acides palmitiques (36,24 ± 1,08 %) et des acides stéariques (35,21 ± 4,51 %). Le dosage de la cytotoxicité dans les cellules individuelles et les cellules de co­culture a montré la non­cytotoxicité des cires douces de son de riz (0,0001 à 1 mg/ml) et des cires dures de son de riz (0,0001 à 0,1 mg/ml). Les activités antivieillissement de la peau de 1 mg/ml de cire douce de son de riz et de 0,1 mg/ml de cire dure de son de riz comprenaient l'inhibition de la mélanogenèse par suppression des enzymes de la tyrosinase et de la protéine liée à la tyrosinase 2, l'activité antioxydante par protection cellulaire contre les dommages et la mort cellulaires, la stimulation du collagène, la suppression de la métalloprotéinase matricielle­1 et la métalloprotéinase matricielle­2 et l'activité anti­inflammatoire. CONCLUSIONS: Les résultats de l'étude indiquent que les cires dures et douces de son de riz peuvent potentiellement être appliquées comme ingrédients fonctionnels dans des formulations contre le vieillissement de la peau et fournir un bénéfice supérieur en termes d'hydratation de la peau.


Assuntos
Oryza , Envelhecimento da Pele , Humanos , Ceras/química , Metaloproteinase 2 da Matriz , Antioxidantes/farmacologia , Oryza/química , Metaloproteinase 1 da Matriz , Ácidos Graxos , Colágeno
7.
Macromol Biosci ; 23(12): e2300250, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37535979

RESUMO

A shear-thinning and self-healing hydrogel based on a gelatin biopolymer is synthesized using vanillin and Fe3+ as dual crosslinking agents. Rheological studies indicate the formation of a strong gel found to be injectable and exhibit rapid self-healing (within 10 min). The hydrogels also exhibited a high degree of swelling, suggesting potential as wound dressings since the absorption of large amounts of wound exudate, and optimum moisture levels, lead to accelerated wound healing. Andrographolide, an anti-inflammatory natural product is used to fabricate silver nanoparticles, which are characterized and composited with the fabricated hydrogels to imbue them with anti-microbial activity. The nanoparticle/hydrogel composites exhibit activity against Escherichia coli, Staphylococcus aureus, and Burkholderia pseudomallei, the pathogen that causes melioidosis, a serious but neglected disease affecting southeast Asia and northern Australia. Finally, the nanoparticle/hydrogel composites are shown to enhance wound closure in animal models compared to the hydrogel alone, confirming that these hydrogel composites hold great potential in the biomedical field.


Assuntos
Hidrogéis , Nanopartículas Metálicas , Animais , Hidrogéis/farmacologia , Gelatina/farmacologia , Prata/farmacologia , Antibacterianos/farmacologia , Cicatrização
8.
Biomolecules ; 13(7)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509191

RESUMO

Superoxide dismutase (SOD) is an essential enzyme that eliminates harmful reactive oxygen species (ROS) generating inside living cells. Due to its efficacities, SOD is widely applied in many applications. In this study, the purification of SOD produced from Saccharomyces cerevisiae TBRC657 was conducted to obtain the purified SOD that exhibited specific activity of 513.74 U/mg with a purification factor of 10.36-fold. The inhibitory test revealed that the purified SOD was classified as Mn-SOD with an estimated molecular weight of 25 kDa on SDS-PAGE. After investigating the biochemical characterization, the purified SOD exhibited optimal activity under conditions of pH 7.0 and 35 °C, which are suitable for various applications. The stability test showed that the purified SOD rapidly decreased in activity under high temperatures. To overcome this, SOD was successfully immobilized on bacterial cellulose (BC), resulting in enhanced stability under those conditions. The immobilized SOD was investigated for its ability to eliminate ROS in fibroblasts. The results indicated that the immobilized SOD released and retained its function to regulate the ROS level inside the cells. Thus, the immobilized SOD on BC could be a promising candidate for application in many industries that require antioxidant functionality under operating conditions.


Assuntos
Saccharomyces cerevisiae , Superóxido Dismutase , Saccharomyces cerevisiae/metabolismo , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Fibroblastos/metabolismo
9.
J Mater Chem B ; 11(16): 3607-3616, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37013997

RESUMO

Silk fibroin (SF) scaffolds have widely been used as functional materials for tissue engineering and implantation. For long-term applications, many cross-linking strategies have been developed to enhance the stability and enzymatic degradation of scaffolds. Although the biocompatibility of SF scaffolds has been investigated, less is known about the extent to which the degradation products of these scaffolds affect the host response in the long term after implantation. In this work, we first studied the effect of two different crosslinkers, namely, 1-ethyl-3-(3-dimethylaminopropyl-carbodiimide hydrochloride) (EDC) and glutaraldehyde (GA), on the topology, mechanical stability and enzymatic degradation of SF scaffolds. We found that the SF scaffolds treated with GA (GA-SF) appeared to show an increase in the sheet thickness and a higher elastic modulus when compared to that treated with EDC (EDC-SF) at a similar level of crosslinking degree. The uncrosslinked and both crosslinked SF scaffolds were completely digested by proteinase K but were not susceptible to degradation by collagenase type IV and trypsin. We next investigated the effect of the degradation of SF on the cytotoxicity, genotoxicity, and immunogenicity. The results demonstrated that the degradation products of the uncrosslinked and crosslinked SFs did not trigger cell proliferation, cell death, or genotoxicity in primary human cells, while they appeared to modulate the phenotypes of macrophages. The degradation products of GA-SF promoted pro-inflammatory phenotypes, while those from EDC-SF enhanced polarization towards anti-inflammatory macrophages. Our results demonstrated that the degradation products of SF scaffolds can mediate the immune modulation of macrophages, which can be implemented as a therapeutic strategy to control the long-term immune response during implantation.


Assuntos
Fibroínas , Humanos , Fibroínas/farmacologia , Alicerces Teciduais , Engenharia Tecidual/métodos , Carbodi-Imidas , Reagentes de Ligações Cruzadas , Glutaral
10.
Pharmaceutics ; 15(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36839923

RESUMO

Human papilloma virus (HPV) is responsible for all cases of cervical cancer. While prophylactic vaccines are available, the development of peptide-based vaccines as a therapeutic strategy is still under investigation. In comparison with the traditional and currently used treatment strategies of chemotherapy and surgery, vaccination against HPV is a promising therapeutic option with fewer side effects. A peptide derived from the HPV-16 E7 protein, called 8Qm, in combination with adjuvants showed promise as a therapeutic vaccine. Here, the ability of polymerized natural amino acids to act as a self-adjuvating delivery system as a therapeutic vaccine was investigated for the first time. Thus, 8Qm was conjugated to polyleucine by standard solid-phase peptide synthesis and self-assembled into nanoparticles or incorporated in liposomes. The liposome bearing the 8Qm conjugate significantly increased mice survival and decreased tumor growth after a single immunization. Further, these liposomes eradicated seven-day-old well-established tumors in mice. Dendritic cell (DC)-targeting moieties were introduced to further enhance vaccine efficacy, and the newly designed liposomal vaccine was tested in mice bearing 11-day-old tumors. Interestingly, these DCs-targeting moieties did not significantly improve vaccine efficacy, whereas the simple liposomal formulation of 8Qm-polyleucine conjugate was still effective in tumor eradication. In summary, a peptide-based anticancer vaccine was developed that stimulated strong cellular immune responses without the help of a classical adjuvant.

11.
Vaccines (Basel) ; 11(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36851183

RESUMO

Intranasal vaccine administration can overcome the disadvantages of injectable vaccines and present greater efficiency for mass immunization. However, the development of intranasal vaccines is challenged by poor mucosal immunogenicity of antigens and the limited availability of mucosal adjuvants. Here, we examined a number of self-adjuvanting liposomal systems for intranasal delivery of lipopeptide vaccine against group A Streptococcus (GAS). Among them, two liposome formulations bearing lipidated cell-penetrating peptide KALA and a new lipidated chitosan derivative (oleoyl-quaternized chitosan, OTMC) stimulated high systemic antibody titers in outbred mice. The antibodies were fully functional and were able to kill GAS bacteria. Importantly, OTMC was far more effective at stimulating antibody production than the classical immune-stimulating trimethyl chitosan formulation. In a simple physical mixture, OTMC also enhanced the immune responses of the tested vaccine, without the need for a liposome delivery system. The adjuvanting capacity of OTMC was further confirmed by its ability to stimulate cytokine production by dendritic cells. Thus, we discovered a new immune stimulant with promising properties for mucosal vaccine development.

12.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36834568

RESUMO

Hyperpigmentation is a medical and cosmetic problem caused by an excess accumulation of melanin or the overexpression of the enzyme tyrosinase, leading to several skin disorders, i.e., freckles, melasma, and skin cancer. Tyrosinase is a key enzyme in melanogenesis and thus a target for reducing melanin production. Although abalone is a good source of bioactive peptides that have been used for several properties including depigmentation, the available information on the anti-tyrosinase property of abalone peptides remains insufficient. This study investigated the anti-tyrosinase properties of Haliotis diversicolor tyrosinase inhibitory peptides (hdTIPs) based on mushroom tyrosinase, cellular tyrosinase, and melanin content assays. The binding conformation between peptides and tyrosinase was also examined by molecular docking and dynamics study. KNN1 showed a high potent inhibitory effect on mushroom tyrosinase with an IC50 of 70.83 µM. Moreover, our selected hdTIPs could inhibit melanin production through the reductions in tyrosinase activity and reactive oxygen species (ROS) levels by enhancing the antioxidative enzymes. RF1 showed the highest activity on both cellular tyrosinase inhibition and ROS reduction. leading to the lower melanin content in B16F10 murine melanoma cells. Accordingly, it can be assumed that our selected peptides exhibited high potential in medical cosmetology applications.


Assuntos
Melaninas , Melanoma Experimental , Animais , Camundongos , Biomimética , Inibidores Enzimáticos/farmacologia , Melaninas/metabolismo , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Gastrópodes/química
13.
Molecules ; 27(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364385

RESUMO

Maerua siamensis (Capparaceae) roots are used for treating pain and inflammation in traditional Thai medicine. Eight new indole alkaloids, named maeruanitriles A and B, maeroximes A-C, and maeruabisindoles A-C, were isolated from them. Spectroscopic methods and computational analysis were applied to determine the structure of the isolated compounds. Maeroximes A-C possesses an unusual O-methyloxime moiety. The bisindole alkaloid maeruabisindoles A and B possess a rare azete ring, whereas maeruabisindole C is the first indolo[3,2-b]carbazole derivative found in this plant family. Five compounds [maeruanitriles A and B, maeroxime C, maeruabisindoles B, and C] displayed anti-inflammatory activity by inhibiting nitric oxide (NO) production in the lipopolysaccharide-induced RAW 264.7 cells. Maeruabisindole B was the most active inhibitor of NO production, with an IC50 of 31.1 ± 1.8 µM compared to indomethacin (IC50 = 150.0 ± 16.0 µM) as the positive control.


Assuntos
Capparaceae , Óxido Nítrico , Camundongos , Animais , Alcaloides Indólicos/química , Raízes de Plantas/química , Células RAW 264.7 , Estrutura Molecular
14.
Pharmaceutics ; 14(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35631570

RESUMO

Synthetic drugs used to treat hair loss cause many side-effects. Natural tea seed oil possesses many activities that can suppress hair loss. However, it is oily and sticky in direct application. In this study, tea seed oil loaded nanostructured lipid carriers (NLC) using Tween 80 (NLC-T), Varisoft 442 (NLC-V), and a combination of both surfactants (NLC-C) was developed. The obtained nanoformulations showed spherical particles in the size range 130-430 nm. Particle size and size distribution of NLC-C and NLC-T after storage at 4, 25, and 40 °C for 90 days were unchanged, indicating their excellent stability. The pH of NLC-T, NLC-V, and NLC-C throughout 90 days remained at 3, 4, and 3.7, respectively. NLC-C showed significantly greater nontoxicity and growth-stimulating effect on human follicle dermal papilla (HFDP) cells than the intact oil. NLC-T and NLC-V could not stimulate cell growth and showed high cytotoxicity. NLC-C showed melting point at 52 ± 0.02 °C and its entrapment efficiency was 96.26 ± 2.26%. The prepared hair serum containing NLC-C showed better spreading throughout the formulation than that containing the intact oil. Using 5% NLC-C showed a 78.8% reduction in firmness of the hair serum while enhancing diffusion efficiency by reducing shear forces up to 81.4%. In conclusion, the developed NLC-C of tea seed oil is an effective alternative in stimulating hair growth. Hair serum containing NLC-C obviously reduces sticky, oily, and greasy feeling after use.

15.
Antibiotics (Basel) ; 11(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326875

RESUMO

The development of effective treatments against infectious diseases is an extensive and ongoing process due to the rapid adaptation of bacteria to antibiotic-based therapies. However, appropriately designed activity enhancers, including antibiotic delivery systems, can increase the effectiveness of current antibiotics, overcoming antimicrobial resistance and decreasing the chance of contributing to further bacterial resistance. The activity/delivery enhancers improve drug absorption, allow targeted antibiotic delivery, improve their tissue and biofilm penetration and reduce side effects. This review provides insights into various antibiotic activity enhancers, including polymer, lipid, and silver-based systems, designed to reduce the adverse effects of antibiotics and improve formulation stability and efficacy against multidrug-resistant bacteria.

16.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215366

RESUMO

Fenugreek, or Trigonella foenum-graecum L. (family Leguminosae) seeds, are typically used as food supplements to increase postnatal lactation. Fenugreek extract displays antioxidative and anti-inflammatory properties, but its mechanisms against skin aging have not been exploited. In this research, we are the first to define an in vitro collagenase inhibitory activity of fenugreek extract (IC50 = 0.57 ± 0.02 mg/mL), which is 2.6 times more potent than vitamin C (IC50 = 1.46 mg/mL). Nanoencapsulation has been applied to improve the extract stability, and subsequently enhanced its bioactivities. Liponiosome encapsulating fenugreek extract (LNF) was prepared using a high-speed homogenizer, resulting in homogeneous spherical nanoparticles with sizes in the range of 174.7 ± 49.2 nm, 0.26 ± 0.04 in PdI, and 46.6 ± 7.4% of entrapment efficiency. LNF formulation significantly facilitated a sustained release and significantly enhanced skin penetration over the extracts, suggesting a potential use of LNF for transdermal delivery. The formulated LNF was highly stable, not toxic to human fibroblast, and was able to enhance cell viability, collagen production, and inhibit MMP1, MMP9, IL-6, and IL-8 secretions compared to the extract in the co-cultured skin model. Therefore, ethanolic fenugreek extract and its developed LNF display molecular mechanisms against skin aging and could potentially be used as an innovative ingredient for the prevention of skin aging.

17.
Nano Res ; 15(3): 2196-2225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34659650

RESUMO

Vaccination is the most effective way to prevent coronavirus disease 2019 (COVID-19). Vaccine development approaches consist of viral vector vaccines, DNA vaccine, RNA vaccine, live attenuated virus, and recombinant proteins, which elicit a specific immune response. The use of nanoparticles displaying antigen is one of the alternative approaches to conventional vaccines. This is due to the fact that nano-based vaccines are stable, able to target, form images, and offer an opportunity to enhance the immune responses. The diameters of ultrafine nanoparticles are in the range of 1-100 nm. The application of nanotechnology on vaccine design provides precise fabrication of nanomaterials with desirable properties and ability to eliminate undesirable features. To be successful, nanomaterials must be uptaken into the cell, especially into the target and able to modulate cellular functions at the subcellular levels. The advantages of nano-based vaccines are the ability to protect a cargo such as RNA, DNA, protein, or synthesis substance and have enhanced stability in a broad range of pH, ambient temperatures, and humidity for long-term storage. Moreover, nano-based vaccines can be engineered to overcome biological barriers such as nonspecific distribution in order to elicit functions in antigen presenting cells. In this review, we will summarize on the developing COVID-19 vaccine strategies and how the nanotechnology can enhance antigen presentation and strong immunogenicity using advanced technology in nanocarrier to deliver antigens. The discussion about their safe, effective, and affordable vaccines to immunize against COVID-19 will be highlighted.

18.
Biomed Pharmacother ; 145: 112461, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34839253

RESUMO

Skin aging is accompanied by an increase in the number of senescent cells, resulting in various pathological outcomes. These include inflammation, impaired barrier function, and susceptibility to skin disorders such as cancer. Kaempferia parviflora (Thai black ginger), a medicinal plant native to Thailand, has been shown to counteract inflammation, cancer, and senescence. This study demonstrates that polymethoxyflavones (5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, and 3,5,7,3',4'-pentamethoxyflavone) purified from K. parviflora rhizomes suppressed cellular senescence, reactive oxygen species, and the senescence-associated secretory phenotype in primary human dermal fibroblasts. In addition, they increased tropocollagen synthesis and alleviated free radical-induced cellular and mitochondrial damage. Moreover, the compounds mitigated chronological aging in a human ex vivo skin model by attenuating senescence and restoring expression of essential components of the extracellular matrix, including collagen type I, fibrillin-1, and hyaluronic acid. Finally, we report that polymethoxyflavones enhanced epidermal thickness and epidermal-dermal stability, while blocking age-related inflammation in skin explants. Our findings support the use of polymethoxyflavones from K. parviflora as natural anti-aging agents, highlighting their potential as active ingredients in cosmeceutical and nutraceutical products.


Assuntos
Colágeno Tipo I/metabolismo , Matriz Extracelular , Flavonoides/farmacologia , Ácido Hialurônico/metabolismo , Envelhecimento da Pele , Pele , Zingiberaceae , Linhagem Celular , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/fisiologia , Fibrilina-1/metabolismo , Fibroblastos/metabolismo , Flavonas/farmacologia , Gerociência , Humanos , Rizoma , Pele/efeitos dos fármacos , Pele/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/fisiologia , Tailândia
19.
Sci Rep ; 11(1): 21836, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750447

RESUMO

Biocompatible materials that act as scaffolds for regenerative medicine are of enormous interest. Hydrogel-nanoparticle composites have great potential in this regard, however evaluations of their wound healing and safety in vivo in animal studies are scarce. Here we demonstrate that a guar gum/curcumin-stabilized silver nanoparticle hydrogel composite is an injectable material with exceptional wound healing and antibacterial properties. We show that the curcumin-bound silver nanoparticles themselves exhibit low cytotoxicity and enhance proliferation, migration, and collagen production in in vitro studies of human dermal fibroblasts. We then show that the hydrogel-nanoparticle composite promotes wound healing in in vivo studies on rats, accelerating wound closure by > 40% and reducing bacterial counts by 60% compared to commercial antibacterial gels. Histopathology indicates that the hydrogel composite enhances transition from the inflammation to proliferation stage of healing, promoting the formation of fibroblasts and new blood vessels, while target gene expression studies confirm that the accelerated tissue remodeling occurs along the normal pathways. As such these hydrogel composites show great promise as wound dressing materials with high antibacterial capacity.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Prata/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/biossíntese , Curcumina/química , Estabilidade de Medicamentos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Galactanos/química , Humanos , Hidrogéis/química , Masculino , Mananas/química , Teste de Materiais , Nanopartículas Metálicas/química , Nanocompostos/administração & dosagem , Nanocompostos/química , Gomas Vegetais/química , Ratos , Ratos Wistar , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia , Alicerces Teciduais/química , Cicatrização/fisiologia
20.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206484

RESUMO

Triple-negative breast cancer (TNBC) presents an important clinical challenge, as it does not respond to endocrine therapies or other available targeting agents. FOXM1, an oncogenic transcriptional factor, has reported to be upregulated and associated with poor clinical outcomes in TNBC patients. In this study, we investigated the anti-cancer effects of FDI-6, a FOXM1 inhibitor, as well as its molecular mechanisms, in TNBC cells. Two TNBC cell lines, MDA-MB-231 and HS578T, were used in this study. The anti-cancer activities of FDI-6 were evaluated using various 2D cell culture assays, including Sulforhodamine B (SRB), wound healing, and transwell invasion assays together with 3D spheroid assays, mimicking real tumour structural properties. After treatment with FDI-6, the TNBC cells displayed a significant inhibition in cell proliferation, migration, and invasion. Increased apoptosis was also observed in the treated cells. In addition, we found that FDI-6 lead to the downregulation of FOXM1 and its key oncogenic targets, including CyclinB1, Snail, and Slug. Interestingly, we also found that the FDI-6/Doxorubicin combination significantly enhanced the cytotoxicity and apoptotic properties, suggesting that FDI-6 might improve chemotherapy treatment efficacy and reduce unwanted side effects. Altogether, FDI-6 exhibited promising anti-tumour activities and could be developed as a newly effective treatment for TNBC.


Assuntos
Antineoplásicos/farmacologia , Proteína Forkhead Box M1/antagonistas & inibidores , Piridinas/farmacologia , Tiofenos/farmacologia , Antineoplásicos/química , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piridinas/química , Tiofenos/química , Neoplasias de Mama Triplo Negativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...