Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; : e63639, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682877

RESUMO

Pettigrew syndrome (PGS), an X-linked intellectual disability (XLID), is caused by mutations in the AP1S2 gene. Herein, we described a Thai family with six patients who had severe-to-profound intellectual impairment, limited verbal communication, and varying degrees of limb spasticity. One patient had a unilateral cataract. We demonstrated facial evolution over time, namely coarse facies, long faces, and thick lip vermilions. We identified a novel AP1S2 variant, c.1-2A>G. The mRNA analysis revealed that the variant resulted in splicing defects with leaky splicing, yielding two distinct aberrant transcripts, one of which likely resulting in the mutant protein lacking the first 44 amino acids whereas the other possibly leading to no production of the protein. By performing a literature review, we found 51 patients and 11 AP1S2 pathogenic alleles described and that all the variants were loss-of-function alleles. The severity of ID in Pettigrew syndrome is mostly severe-to-profound (54.8%), followed by moderate (26.2%) and mild. Progressive spasticity was noted in multiple patients. In summary, leaky splicing found in the present family was likely related to the intrafamilial clinical variability. Our data also support the previous notion of variable expression and neuroprogressive nature of the disorder.

2.
Pediatr Blood Cancer ; 70(3): e30149, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36562549

RESUMO

BACKGROUND: Gaucher disease (GD) is a lysosomal storage disorder, characterized by hepatosplenomegaly, pancytopenia, bone diseases, with or without neurological symptoms. Plasma glucosylsphingosine (lyso-Gb1), a highly sensitive and specific biomarker for GD, has been used for diagnosis and monitoring the response to treatment. Enzyme replacement therapy (ERT) is an effective treatment for the non-neurologic symptoms of GD. Neuronopathic GD (type 2 and 3) accounts for 60%-70% of the Asian affected population. METHODS: We explored combination therapy of ERT followed by hematopoietic stem cell transplantation (HSCT) and its long-term outcomes in patients with GD type 3 (GD3). RESULTS: Four patients with GD3 and one with GD type 1 (GD1) underwent HSCT. The types of donor were one matched-related, one matched-unrelated, and three haploidentical. The age at disease onset was 6-18 months and the age at HSCT was 3.8-15 years in the patients with GD3. The latest age at follow-up was 8-22 years, with a post-HSCT duration of 3-14 years. All patients had successful HSCT. Chronic graft-versus-host disease occurred in one patient. The enzyme activities were normalized at 2 weeks post HSCT. Lyso-Gb1 concentrations became lower than the pathological value. All of the patients are still alive and physically independent. Most of them (4/5) returned to school. None of the patients with GD3 had seizures or additional neurological symptoms after HSCT, but showed varying degrees of cognitive impairment. CONCLUSIONS: ERT followed by HSCT could be considered as an alternative treatment for patients with GD3 who have a high risk of fatal neurological progression.


Assuntos
Doença de Gaucher , Transplante de Células-Tronco Hematopoéticas , Humanos , Criança , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Doença de Gaucher/terapia , Doença de Gaucher/diagnóstico , Terapia de Reposição de Enzimas , Resultado do Tratamento , Biomarcadores
3.
BMC Pediatr ; 22(1): 233, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488219

RESUMO

BACKGROUND: Transcobalamin deficiency is a rare inborn metabolic disorder, characterized by pancytopenia, megaloblastic anemia, failure to thrive, diarrhea, and psychomotor retardation. CASE PRESENTATION: We describe a patient who first presented at 3 months of age, with pancytopenia, hepatosplenomegaly, recurrent infection, metabolic acidosis, and acute hemolytic crisis. Extensive hematologic and immunologic investigations did not identify inherited bone marrow failure syndrome, acute leukemia or its related disorders. Whole exome sequencing identified a novel homozygous TCN2 mutation, c.428-2A > G and mRNA study confirmed an aberrant transcription of exon 4 skipping. The mutant protein is predicted to have an in-fame 51 amino acids deletion (NP_000346:p.Gly143_Val193del). The patient exhibited marked clinical improvement following hydroxocobalamin treatment. CONCLUSIONS: Transcobalamin deficiency should be investigated in infants with unexplained pancytopenia and acute hemolytic crisis with or without typical evidence of vitamin B12 deficiency.


Assuntos
Acidose , Erros Inatos do Metabolismo dos Aminoácidos , Pancitopenia , Genótipo , Humanos , Mutação , Pancitopenia/etiologia , Fenótipo , Doenças Raras , Transcobalaminas/genética
4.
Platelets ; 33(5): 792-796, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34705590

RESUMO

Wiskott-Aldrich syndrome (WAS)/X-linked thrombocytopenia (XLT) is a rare X-linked disease characterized by thrombocytopenia, eczema, and recurrent infection. In addition, WAS/XLT increases incidence of autoimmune diseases and malignancies. We reported 7 male patients, 2 with WAS and 5 with XLT, from 6 different families. Two novel mutations, p.Gly387GlufsTer58 and p.Ala134Asp, were identified in patients with WAS. Both patients had severe clinical phenotypes compatible with classic WAS and developed lethal outcomes with intracranial hemorrhage. Other than that, one patient with XLT developed pineoblastoma.


Assuntos
Trombocitopenia , Síndrome de Wiskott-Aldrich , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Masculino , Mutação , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Síndrome de Wiskott-Aldrich/diagnóstico , Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/genética
5.
Orphanet J Rare Dis ; 16(1): 519, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930372

RESUMO

BACKGROUND: Gaucher disease (GD) is a rare lysosomal storage disorder, characterized by hepatosplenomegaly and pancytopenia, with or without neurologic involvement. The disorder is categorized into three phenotypes: GD type 1 or nonneuronopathic GD; GD type 2 or acute neuronopathic GD; and GD type 3 or chronic neuronopathic GD. The purposes of this study were to describe clinical characteristics of Thai GD in patients diagnosed and/or followed up during 2010-2018 and to perform re-genotyping including analysis of GBA recombinant alleles which had not been investigated in Thai patients before. RESULTS: There were 27 patients from seven medical centers, enrolled in the study. All the cases had pediatric onset. GD3 (44.5%) was the most common phenotype, followed by GD2 (40.7%) and GD1 (14.8%), with one case of neonatal GD. The median age of onset for GD1, GD2, and GD3 was 72, 4 and 12 months, respectively, suggesting relatively earlier onset of GD1 and GD3 in Thai patients. All patients with GD1 and most patients with GD3 received ERT. Four patients with GD3 had ERT followed by HSCT. Patients with GD3 who received no or late ERT showed unfavorable outcomes. We identified 14 variants including two novel (p.S384F and p.W533*) and 12 reported pathogenic variants: p.L483P, p.N409S, p.R159W, p.P305A, p.A175G, p.D448H, p.V414L, IVS2+1G>A, IVS6-1G>C, IVS7+1G>C, IVS9-3C>G, and Rec1a. The p.L483P was the most prevalent allele found in this study, at 66% (33/50 alleles), followed by IVS2+1G>A, Rec1a, and IVS6-1G>C. Twenty-four percent of patients were reassigned with validated genotypes, most of whom (4 of 6) were patients with GD2. The [p.S384F + p.W533*] being compounded with p.L483P, was found in the patient with neonatal GD, suggesting that the p.S384F could potentiate the deleterious effect of the p.W533*, and/or vice versa. CONCLUSIONS: Neuronopathic GD was strikingly prevalent among Thai affected population. Homozygous p.L483P was the most common genotype identified in Thai patients. Recombinant allele Rec1a and splicing mutations were associated with GD2 and severe cases of GD3. Mutation spectrum could be useful for designing stepwise molecular analysis, genetic screenings in population, and new therapeutic research for neuronopathic GD.


Assuntos
Doença de Gaucher , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/genética , Glucosilceramidase/uso terapêutico , Humanos , Mutação/genética , Fenótipo , Tailândia
6.
Front Pediatr ; 9: 801491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35059364

RESUMO

Left ventricular non-compaction (LVNC) is a rare and genetically heterogeneous cardiomyopathy. The disorder vastly affects infants and young children. Severe neonatal LVNC is relatively rare. The prevalence of genetic defects underlying pediatric and adult-onset LVNC is about 17-40%. Mutations of MYH7 and MYBPC3 sarcomeric genes are found in the vast majority of the positive pediatric cases. PKP2 encodes plakophilin-2, a non-sarcomeric desmosomal protein, which has multiple roles in cardiac myocytes including cell-cell adhesion, tightening gap junction, and transcriptional factor. Most of the reported PKP2 mutations are heterozygous missense and truncating variants, and they are associated with an adult-onset autosomal dominant disorder, namely arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). Homozygous PKP2 mutations have been rarely described. Herein, we present a rare case of an infant with neonatal onset of congestive heart failure owing to severe LVNC and multiple muscular VSD. Medical treatments failed to control the heart failure and the patient died at 11 months of age. Whole-exome sequencing identified a novel homozygous PKP2 variant, c.1511-1G>C, in the patient. An mRNA analysis revealed aberrant transcript lacking exon 7, which was predicted to cause a frameshift and truncated peptide (p.Gly460GlufsTer2). The heterozygous parents had normal cardiac structures and functions as demonstrated by electrocardiogram and echocardiography. Pathogenic variants of sarcomeric genes analyzed were not found in the patient. We conducted a literature review and identified eight families with biallelic PKP2 mutations. We observed that three families (our included) with null variants were linked to lethal phenotypes, while homozygous missense mutations resulted in less severe manifestations: adolescent-onset ARVD/C and childhood-onset DCM. Our data support a previous notion that severe neonatal LVNC might represent a unique entity and had distinct genetic spectrum. In conclusion, the present study has extended the phenotypes and genotypes of PKP2-related disorders and lethal LVNC.

7.
Sci Rep ; 10(1): 12712, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728090

RESUMO

MITF is a known gene underlying autosomal dominant hearing loss, Waardenburg syndrome (WS). Biallelic MITF mutations have been found associated with a rare hearing loss syndrome consisting eye abnormalities and albinism; and a more severe type of WS whose heterozygous parents were affected with classic WS in both cases. The aims of this study were to identify a new candidate gene causing autosomal recessive nonsyndromic hearing loss (ARNSHL) and confirm its causation by finding additional families affected with the candidate gene and supporting evidences from functional analyses. By using whole exome sequencing, we identified a homozygous c.1022G>A: p.Arg341His variant of MITF, which co-segregated with the hearing loss in five affected children of a consanguineous hearing couple. Targeted exome sequencing in a cohort of 130 NSHL individuals, using our in-house gene panel revealed a second family with c.1021C>T: p.Arg341Cys MITF variant. Functional studies confirmed that the Arg341His and Arg341Cys alleles yielded a normal sized MITF protein, with aberrant cytosolic localization as supported by the molecular model and the reporter assay. In conclusion, we demonstrate MITF as a new cause of ARNSHL, with heterozygous individuals free of symptoms. MITF should be included in clinical testing for NSHL, though it is rare.


Assuntos
Sequenciamento do Exoma/métodos , Perda Auditiva Neurossensorial/genética , Fator de Transcrição Associado à Microftalmia/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Consanguinidade , Citosol/metabolismo , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Perda Auditiva Neurossensorial/metabolismo , Humanos , Masculino , Fator de Transcrição Associado à Microftalmia/metabolismo , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
8.
Pediatr Cardiol ; 41(1): 165-174, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31712860

RESUMO

Pediatric primary cardiomyopathy is rare but serious, having high mortality; hypertrophic and dilated types are the most common. Its etiology has been mainly considered idiopathic; however, next generation sequencing techniques have revealed nearly half of idiopathic pediatric cases arose from specific genetic mutations. Therefore, our study aimed to identify the genetic causes of primary idiopathic cardiomyopathy. Newborns to 15-year old patients with this condition were recruited between March 2016 and May 2017 at Thammasat University Hospital. Complete patient history and physical examination data were collected by a geneticist with cardiac examinations and echocardiograms by pediatric cardiologists. Whole exome sequencing was performed for all. Of the 12 patients enrolled, 5 cases were dilated type and 7 hypertrophic. Two with dilated type were excluded during follow-up as cause was determined (hypocalcemia and pacemaker induced). A list of 118 genes for cardiomyopathy was analyzed in the remaining 10 cases. Pathogenic and likely pathogenic mutations were identified in 5 patients: HRAS, PTPN11, SOS1, FLNC and TXNRD2; half our patients were not actually idiopathic. Despite its high cost, genetic testing is useful for determining familial risk as well as predicting patient cardiomyopathy progress.


Assuntos
Cardiomiopatias/genética , Sequenciamento do Exoma , Adolescente , Criança , Pré-Escolar , Ecocardiografia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mutação/genética , Linhagem , Estudos Prospectivos
9.
BMC Med Genet ; 20(1): 156, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510962

RESUMO

BACKGROUND: Pompe disease is a lysosomal storage disorder caused by the deficiency of acid alpha-glucosidase (EC. 3.2.1.20) due to mutations in human GAA gene. The objective of the present study was to examine clinical and molecular characteristics of infantile-onset Pompe disease (IOPD) in Thailand. METHODS: Twelve patients with infantile-onset Pompe disease (IOPD) including 10 Thai and two other Asian ethnicities were enrolled. To examine the molecular characteristics of Pompe patients, GAA gene was analyzed by PCR amplification and direct Sanger-sequencing of 20 exons coding region. The novel mutations were transiently transfected in COS-7 cells for functional verification. The severity of the mutation was rated by study of the GAA enzyme activity detected in transfected cells and culture media, as well as the quantity and quality of the proper sized GAA protein demonstrated by western blot analysis. The GAA three dimensional structures were visualized by PyMol software tool. RESULTS: All patients had hypertrophic cardiomyopathy, generalized muscle weakness, and undetectable or < 1% of GAA normal activity. Three patients received enzyme replacement therapy with variable outcome depending on the age of the start of enzyme replacement therapy (ERT). Seventeen pathogenic mutations including four novel variants: c.876C > G (p.Tyr292X), c.1226insG (p.Asp409GlyfsX95), c.1538G > A (p.Asp513Gly), c.1895 T > G (p.Leu632Arg), and a previously reported rare allele of unknown significance: c.781G > A (p.Ala261Thr) were identified. The rating system ranked p.Tyr292X, p. Asp513Gly and p. Leu632Arg as class "B" and p. Ala261Thr as class "D" or "E". These novel mutations were located in the N-terminal beta-sheet domain and the catalytic domain. CONCLUSIONS: The present study provides useful information on the mutations of GAA gene in the underrepresented population of Asia which are more diverse than previously described and showing the hotspots in exons 14 and 5, accounting for 62% of mutant alleles. Almost all mutations identified are in class A/B. These data can benefit rapid molecular diagnosis of IOPD and severity rating of the mutations can serve as a partial substitute for cross reactive immunological material (CRIM) study.


Assuntos
Predisposição Genética para Doença/genética , Doença de Depósito de Glicogênio Tipo II/genética , Mutação , alfa-Glucosidases/genética , Alelos , Animais , Povo Asiático/genética , Sequência de Bases , Células COS , Cardiomiopatia Hipertrófica/genética , Chlorocebus aethiops , Terapia de Reposição de Enzimas , Feminino , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Humanos , Lactente , Masculino , Modelos Moleculares , Patologia Molecular , Análise de Sequência de Proteína , Tailândia , alfa-Glucosidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...