Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
NPJ Breast Cancer ; 9(1): 67, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567880

RESUMO

The combination of Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) and endocrine therapy (ET) is the standard of care for hormone receptor-positive (HR + ), human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC). Currently, there are no robust biomarkers that can predict response to CDK4/6i, and it is not clear which patients benefit from this therapy. Since MBC patients with liver metastases have a poorer prognosis, developing predictive biomarkers that could identify patients likely to respond to CDK4/6i is clinically important. Here we show the ability of imaging texture biomarkers before and a few cycles after CDK4/6i therapy, to predict early response and overall survival (OS) on 73 MBC patients with known liver metastases who received palbociclib plus ET from two sites. The delta radiomic model was associated with OS in validation set (HR: 2.4; 95% CI, 1.06-5.6; P = 0.035; C-index = 0.77). Compared to RECIST response, delta radiomic features predicted response with area under the curve (AUC) = 0.72, 95% confidence interval (CI) 0.67-0.88. Our study revealed that radiomics features can predict a lack of response earlier than standard anatomic/RECIST 1.1 assessment and warrants further study and clinical validation.

2.
Sci Adv ; 8(47): eabq4609, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427313

RESUMO

Tumor vasculature is a key component of the tumor microenvironment that can influence tumor behavior and therapeutic resistance. We present a new imaging biomarker, quantitative vessel tortuosity (QVT), and evaluate its association with response and survival in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitor (ICI) therapies. A total of 507 cases were used to evaluate different aspects of the QVT biomarkers. QVT features were extracted from computed tomography imaging of patients before and after ICI therapy to capture the tortuosity, curvature, density, and branching statistics of the nodule vasculature. Our results showed that QVT features were prognostic of OS (HR = 3.14, 0.95% CI = 1.2 to 9.68, P = 0.0006, C-index = 0.61) and could predict ICI response with AUCs of 0.66, 0.61, and 0.67 on three validation sets. Our study shows that QVT imaging biomarker could potentially aid in predicting and monitoring response to ICI in patients with NSCLC.

3.
Clin Cancer Res ; 28(20): 4410-4424, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35727603

RESUMO

PURPOSE: The tumor-associated vasculature (TAV) differs from healthy blood vessels by its convolutedness, leakiness, and chaotic architecture, and these attributes facilitate the creation of a treatment-resistant tumor microenvironment. Measurable differences in these attributes might also help stratify patients by likely benefit of systemic therapy (e.g., chemotherapy). In this work, we present a new category of computational image-based biomarkers called quantitative tumor-associated vasculature (QuanTAV) features, and demonstrate their ability to predict response and survival across multiple cancer types, imaging modalities, and treatment regimens involving chemotherapy. EXPERIMENTAL DESIGN: We isolated tumor vasculature and extracted mathematical measurements of twistedness and organization from routine pretreatment radiology (CT or contrast-enhanced MRI) of a total of 558 patients, who received one of four first-line chemotherapy-based therapeutic intervention strategies for breast (n = 371) or non-small cell lung cancer (NSCLC, n = 187). RESULTS: Across four chemotherapy-based treatment strategies, classifiers of QuanTAV measurements significantly (P < 0.05) predicted response in held out testing cohorts alone (AUC = 0.63-0.71) and increased AUC by 0.06-0.12 when added to models of significant clinical variables alone. Similarly, we derived QuanTAV risk scores that were prognostic of recurrence-free survival in treatment cohorts who received surgery following chemotherapy for breast cancer [P = 0.0022; HR = 1.25; 95% confidence interval (CI), 1.08-1.44; concordance index (C-index) = 0.66] and chemoradiation for NSCLC (P = 0.039; HR = 1.28; 95% CI, 1.01-1.62; C-index = 0.66). From vessel-based risk scores, we further derived categorical QuanTAV high/low risk groups that were independently prognostic among all treatment groups, including patients with NSCLC who received chemotherapy only (P = 0.034; HR = 2.29; 95% CI, 1.07-4.94; C-index = 0.62). QuanTAV response and risk scores were independent of clinicopathologic risk factors and matched or exceeded models of clinical variables including posttreatment response. CONCLUSIONS: Across these domains, we observed an association of vascular morphology on CT and MRI-as captured by metrics of vessel curvature, torsion, and organizational heterogeneity-and treatment outcome. Our findings suggest the potential of shape and structure of the TAV in developing prognostic and predictive biomarkers for multiple cancers and different treatment strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quimiorradioterapia/métodos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Tomografia Computadorizada por Raios X , Microambiente Tumoral
5.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35256515

RESUMO

BACKGROUND: The landmark study of durvalumab as consolidation therapy in NSCLC patients (PACIFIC trial) demonstrated significantly longer progression-free survival (PFS) in patients with locally advanced, unresectable non-small cell lung cancer (NSCLC) treated with durvalumab (immunotherapy, IO) therapy after chemoradiotherapy (CRT). In clinical practice in the USA, durvalumab continues to be used in patients across all levels of programmed cell death ligand-1 (PD-L1) expression. While immune therapies have shown promise in several cancers, some patients either do not respond to the therapy or have cancer recurrence after an initial response. It is not clear so far who will benefit of this therapy or what the mechanisms behind treatment failure are. METHODS: A total of 133 patients with unresectable stage III NSCLC who underwent durvalumab after CRT or CRT alone were included. Patients treated with durvalumab IO after CRT were randomly split into training (D1=59) and test (D2=59) sets and the remaining 15 patients treated with CRT alone were grouped in D3. Radiomic textural patterns from within and around the target nodules were extracted. A radiomic risk score (RRS) was built and was used to predict PFS and overall survival (OS). Patients were divided into high-risk and low-risk groups based on median RRS. RESULTS: RRS was found to be significantly associated with PFS in D1 (HR=2.67, 95% CI 1.85 to 4.13, p<0.05, C-index=0.78) and D2 (HR=2.56, 95% CI 1.63 to 4, p<0.05, C-index=0.73). Similarly, RRS was associated with OS in D1 (HR=1.89, 95% CI 1.3 to 2.75, p<0.05, C-index=0.67) and D2 (HR=2.14, 95% CI 1.28 to 3.6, p<0.05, C-index=0.69), respectively. RRS was found to be significantly associated with PFS in high PD-L1 (HR=3.01, 95% CI 1.41 to 6.45, p=0.0044) and low PD-L1 (HR=2.74, 95% CI 1.8 to 4.14, p=1.77e-06) groups. Moreover, RRS was not significantly associated with OS in the high PD-L1 group (HR=2.08, 95% CI 0.98 to 4.4, p=0.054) but was significantly associated with OS in the low PD-L1 group (HR=1.61, 95% CI 1.14 to 2.28, p=0.0062). In addition, RRS was significantly associated with PFS (HR=2.77, 95% CI 1.17 to 6.52, p=0.019, C-index=0.77) and OS (HR=2.62, 95% CI 1.25 to 5.51, p=0.01, C-index=0.77) in D3, respectively. CONCLUSIONS: Tumor radiomics of pretreatment CT images from patients with stage III unresectable NSCLC were prognostic of PFS and OS to CRT followed by durvalumab IO and CRT alone.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Anticorpos Monoclonais , Antígeno B7-H1/uso terapêutico , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quimiorradioterapia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico
6.
Front Oncol ; 11: 744724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745966

RESUMO

BACKGROUND: Small cell lung cancer (SCLC) is an aggressive malignancy characterized by initial chemosensitivity followed by resistance and rapid progression. Presently, there are no predictive biomarkers that can accurately guide the use of systemic therapy in SCLC patients. This study explores the role of radiomic features from both within and around the tumor lesion on pretreatment CT scans to a) prognosticate overall survival (OS) and b) predict response to chemotherapy. METHODS: One hundred fifty-three SCLC patients who had received chemotherapy were included. Lung tumors were contoured by an expert reader. The patients were divided randomly into approximately equally sized training (Str = 77) and test sets (Ste = 76). Textural descriptors were extracted from the nodule (intratumoral) and parenchymal regions surrounding the nodule (peritumoral). The clinical endpoints of this study were OS, progression-free survival (PFS), and best objective response to chemotherapy. Patients with complete or partial response were defined as "responders," and those with stable or progression of disease were defined as "non-responders." The radiomic risk score (RRS) was generated by using the least absolute shrinkage and selection operator (LASSO) with the Cox regression model. Patients were classified into the high-risk or low-risk groups based on the median of RRS. Association of the radiomic signature with OS was evaluated on Str and then tested on Ste. The features identified by LASSO were then used to train a linear discriminant analysis (LDA) classifier (MRad) to predict response to chemotherapy. A prognostic nomogram (NRad+Clin) was also developed on Str by combining clinical and prognostic radiomic features and validated on Ste. The Kaplan-Meier survival analysis and log-rank statistical tests were performed to assess the discriminative ability of the features. The discrimination performance of the NRad+Clin was assessed by Harrell's C-index. To estimate the clinical utility of the nomogram, decision curve analysis (DCA) was performed by calculating the net benefits for a range of threshold probabilities in predicting which high-risk patients should receive more aggressive treatment as compared with the low-risk patients. RESULTS: A univariable Cox regression analysis indicated that RRS was significantly associated with OS in Str (HR: 1.53; 95% CI, [1.1-2.2; p = 0.021]; C-index = 0.72) and Ste (HR: 1.4, [1.1-1.82], p = 0.0127; C-index = 0.69). The RRS was also significantly associated with PFS in Str (HR: 1.89, [1.4-4.61], p = 0.047; C-index = 0.7) and Ste (HR: 1.641, [1.1-2.77], p = 0.04; C-index = 0.67). MRad was able to predict response to chemotherapy with an area under the receiver operating characteristic curve (AUC) of 0.76 ± 0.03 within Str and 0.72 within Ste. Predictors, including the RRS, gender, age, stage, and smoking status, were used in the prognostic nomogram. The discrimination ability of the NRad+Clin model on Str and Ste was C-index [95% CI]: 0.68 [0.66-0.71] and 0.67 [0.63-0.69], respectively. DCA indicated that the NRad+Clin model was clinically useful. CONCLUSIONS: Radiomic features extracted within and around the lung tumor on CT images were both prognostic of OS and predictive of response to chemotherapy in SCLC patients.

7.
Eur J Cancer ; 148: 146-158, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33743483

RESUMO

OBJECTIVE: To identify stable and discriminating radiomic features on non-contrast CT scans to develop more generalisable radiomic classifiers for distinguishing granulomas from adenocarcinomas. METHODS: In total, 412 patients with adenocarcinomas and granulomas from three institutions were retrospectively included. Segmentations of the lung nodules were performed manually by an expert radiologist in a 2D axial view. Radiomic features were extracted from intra- and perinodular regions. A total of 145 patients were used as part of the training set (Str), whereas 205 patients were used as part of test set I (Ste1) and 62 patients were used as part of independent test set II (Ste2). To mitigate the variation of CT acquisition parameters, we defined 'stable' radiomic features as those for which the feature expression remains relatively unchanged between different sites, as assessed using a Wilcoxon rank-sum test. These stable features were used to develop more generalisable radiomic classifiers that were more resilient to variations in lung CT scans. Features were ranked based on two criteria, firstly based on discriminability (i.e. maximising AUC) alone and subsequently based on maximising both feature stability and discriminability. Different machine-learning classifiers (Linear discriminant analysis, Quadratic discriminant analysis, Support vector machines and random forest) were trained with features selected using the two different criteria and then compared on the two independent test sets for distinguishing granulomas from adenocarcinomas, in terms of area under the receiver operating characteristic curve. RESULTS: In the test sets, classifiers constructed using the criteria involving maximising feature stability and discriminability simultaneously achieved higher AUC compared with the discriminating alone criteria (Ste1 [n = 205]: maximum AUCs of 0.85versus . 0.80; p-value = 0.047 and Ste2 [n = 62]: maximum AUCs of 0.87 versus. 0.79; p-value = 0.021). These differences held for features extracted from scans with <3 mm slice thickness (AUC = 0.88 versus. 0.80; p-value = 0.039, n = 100) and for the ≥3 mm cases (AUC = 0.81 versus. 0.76; p-value = 0.034, n = 105). In both experiments, shape and peritumoural texture features had a higher stability compared with intratumoural texture features. CONCLUSIONS: Our study suggests that explicitly accounting for both stability and discriminability results in more generalisable radiomic classifiers to distinguish adenocarcinomas from granulomas on non-contrast CT scans. Our results also showed that peritumoural texture and shape features were less affected by the scanner parameters compared with intratumoural texture features; however, they were also less discriminating compared with intratumoural features.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Granuloma/diagnóstico , Neoplasias Pulmonares/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Adenocarcinoma de Pulmão/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Diagnóstico Diferencial , Seguimentos , Granuloma/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Aprendizado de Máquina , Prognóstico , Estudos Retrospectivos
8.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33051342

RESUMO

PURPOSE: Hyperprogression is an atypical response pattern to immune checkpoint inhibition that has been described within non-small cell lung cancer (NSCLC). The paradoxical acceleration of tumor growth after immunotherapy has been associated with significantly shortened survival, and currently, there are no clinically validated biomarkers to identify patients at risk of hyperprogression. EXPERIMENTAL DESIGN: A total of 109 patients with advanced NSCLC who underwent monotherapy with Programmed cell death protein-1 (PD1)/Programmed death-ligand-1 (PD-L1) inhibitors were included in the study. Using RECIST measurements, we divided the patients into responders (n=50) (complete/partial response or stable disease) and non-responders (n=59) (progressive disease). Tumor growth kinetics were used to further identify hyperprogressors (HPs, n=19) among non-responders. Patients were randomized into a training set (D1=30) and a test set (D2=79) with the essential caveat that HPs were evenly distributed among the two sets. A total of 198 radiomic textural patterns from within and around the target nodules and features relating to tortuosity of the nodule associated vasculature were extracted from the pretreatment CT scans. RESULTS: The random forest classifier using the top features associated with hyperprogression was able to distinguish between HP and other radiographical response patterns with an area under receiver operating curve of 0.85±0.06 in the training set (D1=30) and 0.96 in the validation set (D2=79). These features included one peritumoral texture feature from 5 to 10 mm outside the tumor and two nodule vessel-related tortuosity features. Kaplan-Meier survival curves showed a clear stratification between classifier predicted HPs versus non-HPs for overall survival (D2: HR=2.66, 95% CI 1.27 to 5.55; p=0.009). CONCLUSIONS: Our study suggests that image-based radiomics markers extracted from baseline CTs of advanced NSCLC treated with PD-1/PD-L1 inhibitors may help identify patients at risk of hyperprogressions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Tomografia Computadorizada por Raios X/métodos , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/mortalidade , Masculino , Estudos Retrospectivos , Análise de Sobrevida
9.
Lung Cancer ; 142: 90-97, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32120229

RESUMO

OBJECTIVES: To evaluate whether combining stability and discriminability criteria in building radiomic classifiers will improve the prognosis of cancer recurrence in early stage non-small cell lung cancer on non-contrast computer tomography (CT). MATERIALS AND METHODS: CT scans of 610 patients with early stage (IA, IB, IIA) NSCLC from four independent cohorts were evaluated. A total of 350 patients from Cleveland Clinic Foundation and University of Pennsylvania were divided into two equal sets for training (D1) and validation set (D2). 80 patients from The Cancer Genome Atlas Lung Adenocarcinoma and Squamous Cell Carcinoma and 195 patients from The Cancer Imaging Archive, were used as independent second (D3) and third (D4) validation sets. A linear discriminant analysis (LDA) classifier was built based on the most stable and discriminate features. In addition, a radiomic risk score (RRS) was generated by using least absolute shrinkage and selection operator, Cox regression model to predict time to progression (TTP) following surgery. RESULTS: A feature selection strategy focusing on both feature discriminability and stability resulted in the classifier having a higher discriminability on validation datasets compared to the discriminability alone criteria in discriminating cancer recurrence (D2, AUC of 0.75 vs. 0.65; D3, 0.74 vs. 0.62; D4, 0.76 vs. 0.63). The RRS generated by most stable-discriminating features was significantly associated with TTP compared to discriminating alone criteria (HR = 1.66, C-index of 0.72 vs. HR = 1.04, C-index of 0.62). CONCLUSION: Accounting for both stability and discriminability yielded a more generalizable classifier for predicting cancer recurrence and TTP in early stage NSCLC.


Assuntos
Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/patologia , Recidiva Local de Neoplasia/patologia , Pneumonectomia/mortalidade , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/cirurgia , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
10.
Cancer Immunol Res ; 8(1): 108-119, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31719058

RESUMO

No predictive biomarkers can robustly identify patients with non-small cell lung cancer (NSCLC) who will benefit from immune checkpoint inhibitor (ICI) therapies. Here, in a machine learning setting, we compared changes ("delta") in the radiomic texture (DelRADx) of CT patterns both within and outside tumor nodules before and after two to three cycles of ICI therapy. We found that DelRADx patterns could predict response to ICI therapy and overall survival (OS) for patients with NSCLC. We retrospectively analyzed data acquired from 139 patients with NSCLC at two institutions, who were divided into a discovery set (D1 = 50) and two independent validation sets (D2 = 62, D3 = 27). Intranodular and perinodular texture descriptors were extracted, and the relative differences were computed. A linear discriminant analysis (LDA) classifier was trained with 8 DelRADx features to predict RECIST-derived response. Association of delta-radiomic risk score (DRS) with OS was determined. The association of DelRADx features with tumor-infiltrating lymphocyte (TIL) density on the diagnostic biopsies (n = 36) was also evaluated. The LDA classifier yielded an AUC of 0.88 ± 0.08 in distinguishing responders from nonresponders in D1, and 0.85 and 0.81 in D2 and D3 DRS was associated with OS [HR: 1.64; 95% confidence interval (CI), 1.22-2.21; P = 0.0011; C-index = 0.72). Peritumoral Gabor features were associated with the density of TILs on diagnostic biopsy samples. Our results show that DelRADx could be used to identify early functional responses in patients with NSCLC.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Imunoterapia/mortalidade , Neoplasias Pulmonares/mortalidade , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Receptor de Morte Celular Programada 1/imunologia , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento
12.
Lung Cancer ; 135: 1-9, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31446979

RESUMO

OBJECTIVE: The use of a neoadjuvant chemoradiation followed by surgery in patients with stage IIIA NSCLC is controversial and the benefit of surgery is limited. There are currently no clinically validated biomarkers to select patients for such an approach. In this study we evaluate computed tomography (CT) derived intratumoral and peritumoral texture and nodule shape features in their ability to predict major pathological response (MPR). MPR being defined as ≤10% of residual viable tumor, assessed at the time of surgery. MATERIAL AND METHODS: Ninety patients with stage III NSCLC treated with chemoradiation prior to surgical resection were selected. The patients were divided randomly into two equal sets, one for training and one for independent testing. The radiomic texture and shape features were extracted from within the nodule (intra) and from the parenchymal regions immediately surrounding the nodule (peritumoral). A univariate regression analysis was performed on the image and clinicopathologic variables and then included into a multivariable logistic regression (MLR) for binary outcome prediction of MPR. The radiomic signature risk-score was generated by using a multivariate Cox regression model and association of the signature with OS and DFS was also evaluated. RESULTS: Thirteen stable and predictive intratumoral and peritumoral radiomic texture features were found to be predictive of MPR. The MLR classifier yielded an AUC of 0.90 ±â€¯0.025 within the training set and a corresponding AUC = 0.86 in prediction of MPR within the test set. The radiomic signature was also significantly associated with OS (HR = 11.18, 95% CI = 3.17, 44.1; p-value = 0.008) and DFS (HR = 2.78, 95% CI = 1.11, 4.12; p-value = 0.0042) in the testing set. CONCLUSION: Texture features extracted within and around the lung tumor on CT images appears to be associated with the likelihood of MPR, OS and DFS to chemoradiation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Tomografia Computadorizada por Raios X , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Radiometria , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
13.
Radiology ; 290(3): 783-792, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30561278

RESUMO

Purpose To evaluate ability of radiomic (computer-extracted imaging) features to distinguish non-small cell lung cancer adenocarcinomas from granulomas at noncontrast CT. Materials and Methods For this retrospective study, screening or standard diagnostic noncontrast CT images were collected for 290 patients (mean age, 68 years; range, 18-92 years; 125 men [mean age, 67 years; range, 18-90 years] and 165 women [mean age, 68 years; range, 33-92 years]) from two institutions between 2007 and 2013. Histopathologic analysis was available for one nodule per patient. Corresponding nodule of interest was identified on axial CT images by a radiologist with manual annotation. Nodule shape, wavelet (Gabor), and texture-based (Haralick and Laws energy) features were extracted from intra- and perinodular regions. Features were pruned to train machine learning classifiers with 145 patients. In a test set of 145 patients, classifier results were compared against a convolutional neural network (CNN) and diagnostic readings of two radiologists. Results Support vector machine classifier with intranodular radiomic features achieved an area under the receiver operating characteristic curve (AUC) of 0.75 on the test set. Combining radiomics of intranodular with perinodular regions improved the AUC to 0.80. On the same test set, CNN resulted in an AUC of 0.76. Radiologist readers achieved AUCs of 0.61 and 0.60, respectively. Conclusion Radiomic features from intranodular and perinodular regions of nodules can distinguish non-small cell lung cancer adenocarcinomas from benign granulomas at noncontrast CT. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Nishino in this issue.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Granuloma/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Máquina de Vetores de Suporte
14.
Radiol Artif Intell ; 1(2): e180012, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32076657

RESUMO

PURPOSE: To identify the role of radiomics texture features both within and outside the nodule in predicting (a) time to progression (TTP) and overall survival (OS) as well as (b) response to chemotherapy in patients with non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: Data in a total of 125 patients who had been treated with pemetrexed-based platinum doublet chemotherapy at Cleveland Clinic were retrospectively analyzed. The patients were divided randomly into two sets with the constraint that there were an equal number of responders and nonresponders in the training set. The training set comprised 53 patients with NSCLC, and the validation set comprised 72 patients. A machine learning classifier trained with radiomic texture features extracted from intra- and peritumoral regions of non-contrast-enhanced CT images was used to predict response to chemotherapy. The radiomic risk-score signature was generated by using least absolute shrinkage and selection operator with the Cox regression model; association of the radiomic signature with TTP and OS was also evaluated. RESULTS: A combination of radiomic features in conjunction with a quadratic discriminant analysis classifier yielded a mean maximum area under the receiver operating characteristic curve (AUC) of 0.82 ± 0.09 (standard deviation) in the training set and a corresponding AUC of 0.77 in the independent testing set. The radiomics signature was also significantly associated with TTP (hazard ratio [HR], 2.8; 95% confidence interval [CI]: 1.95, 4.00; P < .0001) and OS (HR, 2.35; 95% CI: 1.41, 3.94; P = .0011). Additionally, decision curve analysis demonstrated that in terms of clinical usefulness, the radiomics signature had a higher overall net benefit in prediction of high-risk patients to receive treatment than the clinicopathologic measurements. CONCLUSION: This study suggests that radiomic texture features extracted from within and around the nodule on baseline CT scans are (a) predictive of response to chemotherapy and (b) associated with TTP and OS for patients with NSCLC.© RSNA, 2019Supplemental material is available for this article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...