Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11867, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481580

RESUMO

The present study aimed to investigate the neuroprotective activity of the black peel pomegranate extract, and silver nanoparticles (AgNPs) biosynthesized using the extract. We pretreated the human neuroblastoma SH-SY5 cells with the extract and AgNPs and evaluated the neuroprotective activity of these agents against methamphetamine (Meth) cytotoxicity. The NPs were spherical with 19 ± 8 nm size, - 28 mV surface charge, and 0.20 PDI. Meth killed the cells by increasing proapoptotic (Bax, PTEN, AKT, PI3K, NF-κB, P53, TNF-α, Cyt C, and Cas 3) and decreasing the antiapoptotic genes (Bcl-2) expression. Exposure to Meth caused DNA fragmentation and increased the intercellular ROS and malondialdehyde (MDA) levels while reducing the mitochondrial membrane potential (MMP). A 4-h pretreatment of the cells with the extract and AgNPs could retain the viability of the cells above 80% by increasing the Bcl-2 expression up to fourfold and inhibiting the cell death pathways. ROS, MDA, and MMP levels in the pretreated cells were close to the control group. The percentage of necrosis in cells pretreated with the extract and AgNPs declined to 32% and 8%, respectively. Our promising findings indicated that AgNPs could reduce Meth-induced oxidative stress and prevent necrotic and apoptotic cell death by regulating related genes' expression.


Assuntos
Nanopartículas Metálicas , Metanfetamina , Neuroblastoma , Humanos , Prata/farmacologia , Espécies Reativas de Oxigênio , Morte Celular , Necrose , Metanfetamina/toxicidade
2.
3 Biotech ; 13(6): 170, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188290

RESUMO

The considerable flexibility of cancerous cells to escape from chemical and biological drugs makes it clear that much is to be done to control and eliminate such cells. Probiotic bacteria, in this regard, have shown promising performance. In this study, we isolated and characterized lactic acid bacteria from traditional cheese. Then we evaluated their activity against doxorubicin-resistant MCF-7 cells (MCF-7/DOX) through MTT assay, Annexin V/PI protocol, real-time PCR, and western blotting. Among the isolates, one strain with more than 97% similarity with Pediococcus acidilactici showed considerable probiotics properties. Low pH, high bile salts, and NaCl could not significantly affect this strain while it was susceptible to antibiotics. Also, it had a potent antibacterial activity. Besides, the cell-free supernatant of this strain (CFS) significantly reduced the viability of MCF-7 and MCF-7/DOX cancerous cells (to about 10% and 25%, respectively), while it was safe for normal cells. Also, we found that CFS could regulate the Bax/Bcl-2 at mRNA and protein levels to induce apoptosis in drug-resistant cells. We determined 75% early apoptosis, 10% late apoptosis, and 15% necrosis in the cells treated with the CFS. These findings can accelerate the development of probiotics as promising alternative treatments to overcome drug-resistant cancers.

3.
AMB Express ; 11(1): 85, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110520

RESUMO

Considering the prevalence of resistance to antibiotics, the discovery of effective agents against resistant pathogens is of extreme urgency. Herein, 26 mecA-positive methicillin-resistant S. aureus (MRSA) isolated from clinical samples were identified, and their resistance to 11 antibiotics was investigated. Next, the antibacterial and anti-biofilm activity of the ethanolic extract of M. communis on these strains was evaluated. Furthermore, the effect of this extract on the expression of biofilm-associated genes, icaA, icaD, bap, sarA, and agr, was studied. According to the results, all isolated strains were multidrug-resistant and showed resistance to oxacillin and tetracycline. Also, 96.15 and 88.46 % of them were resistant to gentamicin and erythromycin. However, the extract could effectively combat the strains. The minimum inhibitory concentration (MIC) against different strains ranged from 1.56 to 25 mg/ml and the minimum bactericidal concentration (MBC) was between 3.125 and 50 mg/ml. Even though most MRSA (67 %) strongly produced biofilm, the sub-MIC concentration of the extract destroyed the pre-formed biofilm and affected the bacterial cells inside the biofilm. It could also inhibit biofilm development by significantly decreasing the expression of icaA, icaD, sarA and bap genes involved in biofilm formation and development. In conclusion, the extract inhibits biofilm formation, ruins pre-formed biofilm, and kills cells living inside the biofilm. Furthermore, it down-regulates the expression of necessary genes and nips the biofilm formation in the bud.

4.
Biotechnol Rep (Amst) ; 29: e00593, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33598413

RESUMO

Herein, 18 lactic acid bacteria isolated from 30 samples of traditional dairy products were identified, and their probiotic potential was evaluated. According to the results, almost all strains showed the probiotic properties sufficiently, though M1 had better characterise. 16S rRNA gene sequencing revealed that this strain belongs to the Pediococcus sp. (<95 % similarity). This strain had substantial antipathogenic activity and did not show any worrying antibiotic resistance. Also, the strain was resistant to high concentrations of bile salt (1 %), NaCl (6.5 %), and low pH (2). Furthermore, it was revealed that cell-free supernatant (CFS), heat-killed cells and live cells derived from M1 significantly decreased the viability of MCF-7 cells so that the CFS resulted in 85 % cell death. Flow cytometry and western blot analysis determined that this compound induced apoptosis in the cancerous cells through increasing the BAX protein expression and decreasing the Bcl-2 protein expression.

5.
Food Sci Nutr ; 8(11): 6023-6030, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33282254

RESUMO

This study was aimed to isolate and partially characterizes the bacteriocin produced by an L. plantarum sp. isolated from traditional sourdough. The bacteriocin was partially purified, and after treating it with different harsh conditions, its antibacterial activity was evaluated against L. monocytogenes as an indicator. Also, the growth phase during which the bacteriocin is produced, and its mode of action, was examined. Finally, the molecular weight of this compound was evaluated by using SDS-PAGE analysis. According to the results, this bacteriocin had a molecular weight well lower than 10 kDa that was mainly produced at the early stationary phase and reached its highest activity (3,200 AU/ml) at the same stage. It was tolerant toward a wide range of pH (2-10), temperatures (-20 to 120°C), and high concentrations of NaCl. Notably, the bacteriocin-producing strain had proteolytic activity, while the bacteriocin produced by that showed resistance to proteolytic enzymes (pepsin, trypsin, and proteinase K). Also, it was revealed that the bacteriocin activity is mostly bacteriostatic so that it considerably inhibits pathogens' growth, particularly S. aureus, E. coli, and L. monocytogenes. These characteristics prove that strain and its bacteriocin can be considered as one of the most promising agents to use in the food industry.

6.
Biotechnol Rep (Amst) ; 24: e00393, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31763203

RESUMO

"Black Peel Pomegranate" is a rare pomegranate cultivar that its specific features are still uncovered particularly in the bio-nano researches. The present study was organized to evaluate this pomegranate's potential in the biosynthesis of silver nanoparticles as well as bio-medical activities. According to the results, the pomegranate peel extract incredibly inhibited 100 % of DPPH free radicals (EC50 = 5 µg/mL). This extract also induced more than 70 % cell death in the treated breast tumor cell lines, BT-20 and MCF-7. Interestingly, the extract was capable of biosynthesis very stable and small (15.6 nm) silver nanoparticles at ambient temperature in an ultra-fast pace. Likewise, these nanoparticles inhibited 77 % of DPPH free radicals (EC50 = 9 µg/mL). Although this antioxidant capacity was lower than that of the extract, instead, the anticancer activity of the synthesized nanoparticles was significantly enhanced, so that they led to more than 81 % and 89 % cell death in the breast tumor cell lines BT-20 and MCF-7, respectively. Considerably, neither the extract nor the biosynthesized silver nanoparticles, showed significant toxicity against non-tumor cell lines (L-929) at the same concentrations. These features of the biosynthesized nanoparticles were quite outstanding in comparison with chemical/commercial ones. Overall, the present study introduces black peel pomegranate as a worthy bio-agent in the biosynthesis of silver nanoparticles with unique activities as well as a cancer treatment.

7.
Sci Rep ; 9(1): 9167, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235712

RESUMO

In this study, two green procedures for Silver-Graphene Oxide (Ag-GO) nanocomposite synthesis were investigated. As a common method, AgNO3 was first loaded on the GO surface and then was reduced and stabilized by walnut green husk extract, producing Ag-GO-І. As an innovative approach, GO was first exposed to the extract and then the AgNO3 was added as the second step, producing Ag-GO-П. Physicochemical properties, antibacterial and cytotoxicity activity of both nanocomposites were subsequently studied comparing with free silver nanoparticles (AgNPs) and pure GO. Based on the results, exposure of GO to the extract, as a reducing agent, at the first/last step of the synthesis process resulted in the fundamental differences in the final products. So that, high amounts of agglomerated silver nanoparticles were formed between the GO sheets, when using the common method, whereas in Ag-GO-П, small AgNPs were formed on the GO sheets without aggregation, entirely covering the sheets. Antibacterial and cytotoxic behavior of these nanomaterials could be compared as AgNPs > Ag-GO-П > Ag-GO-І. It is assumed that these differences are due to control of unwanted nucleation in the synthesis process that Ag nanoparticles are smaller with less agglomeration when the GO surfaces are pre-treated with reducing agent.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Nanocompostos/química , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Células MCF-7
8.
Int J Nanomedicine ; 13: 8013-8024, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568442

RESUMO

INTRODUCTION: Silver nanoparticles (AgNPs) are of great interest due to their unique and controllable characteristics. Different synthesis methods have been proposed to produce these nanoparticles, which often require elevated temperatures/pressures or toxic solvents. Thus, green synthesis could be a replacement option as a simple, economically viable and environmentally friendly alternative approach for the synthesis of silver nanoparticles. METHODS: Here, the potential of the walnut green husk was investigated in the production of silver nanoparticles. An aqueous solution extracted from walnut green husk was used as a reducing agent as well as a stabilizing agent. Then, the synthesized nanoparticles were characterized with respect of their anticancer, antioxidant, and antimicrobial properties. RESULTS: Results showed that the synthesized nanoparticles possessed an average size of 31.4 nm with a Zeta potential of -33.8 mV, indicating high stability. A significant improvement in the cytotoxicity and antioxidant characteristics of the green synthesized Ag nanoparticles against a cancerous cell line was observed in comparison with the walnut green husk extract and a commercial silver nanoparticle (CSN). This could be due to a synergistic effect of the synthesized silver nanoparticles and their biological coating. AgNPs and the extract exhibited 70% and 40% cytotoxicity against MCF-7 cancerous cells, respectively, while CSN caused 56% cell death (at the concentration of 60 µg/mL). It was observed that AgNPs were much less cytotoxic when tested against a noncancerous cell line (L-929) in comparison with the control material (CSN). The free radical scavenging analysis demonstrated profound anti-oxidant activity for the synthesized nanoparticles in comparison with the extract and CSN. It was also detected that the synthesized AgNPs possess antibacterial activity against nosocomial and standard strains of both Gram-positive and Gram-negative bacteria (minimum inhibitory concentration =5-30 µg/mL). CONCLUSION: These findings imply that the synthesized nanoparticles using green nanotechnology could be an ideal strategy to combat cancer and infectious diseases.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Química Verde/métodos , Nanopartículas Metálicas/química , Prata/farmacologia , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Difusão Dinâmica da Luz , Humanos , Células MCF-7 , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...