Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-37542606

RESUMO

LncRNAs, pseudogenes, and miRNAs participate a fundamental function in tumorigenesis, metabolism, and invasion of cancer cells, although their regulation of tumor glycolysis in prostate adenocarcinoma (PRAD) is thoroughly not well studied. In this study, we applied transcriptomic, proteomic, and medical information to identify glycolysis-related key genes and modules associated with PRAD. Then, the glycolysis-related lncRNA/lncRNAs/pseudogenes-miRNA-mRNA network was constructed. Analysis of DNA methylation status and expression data determined a DNA methylation-dysregulated three-DE-mRNAs signature for predicting diagnosis, ANGPTL4, GNE, and HSPA in PRAD patients and healthy control. Several lncRNAs/pseudogenes, significantly correlated with the overall survival PVT1, CA5BP1, MIRLET7BHG, SNHG12, and ZNF37BP and disease-free survival status, MALAT1, GUSBP11, MIRLET7BHG, and SNHG1, of patients with PRAD were determined. The methylation profile of DE-lncRNA/pseudogenes was significantly proper for predicting PRAD prognostic model. The transcription level of 6 DE-mRNA ANGPTL4, QSOX1, BIK, CLDN3, DDIT4, and TFF3 was correlated with cancer-related fibroblast infiltration in PRAD. The mutated form of 7 mRNAs, COL5A1, IDH1, HK2, DDIT4, GNE, and QSOX1, was associated with PRAD. In addition to the glycolysis pathway, DE-RNAs play regulatory roles on several pathways, including DNA damage, RTK, cell cycle, RAS/MAPK, TSC/mTOR and PI3K/AKT, AR hormone, and EMT. Overall, our study improves our knowledge of the relation between lncRNAs/pseudogenes and miRNA related to glycolysis and PRAD pathogenesis. This schematics presents shows the websites and databases implemented in this research.

3.
Mol Neurobiol ; 60(8): 4659-4678, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37138197

RESUMO

Gliomas make up virtually 80% of all lethal primary brain tumors and are categorized based on their cell of origin. Glioblastoma is an astrocytic tumor that has an inferior prognosis despite the ongoing advances in treatment modalities. One of the main reasons for this shortcoming is the presence of the blood-brain barrier and blood-brain tumor barrier. Novel invasive and non-invasive drug delivery strategies for glioblastoma have been developed to overcome both the intact blood-brain barrier and leverage the disrupted nature of the blood-brain tumor barrier to target cancer cells after resection-the first treatment stage of glioblastoma. Exosomes are among non-invasive drug delivery methods and have emerged as a natural drug delivery vehicle with high biological barrier penetrability. There are various exosome isolation methods from different origins, and the intended use of the exosomes and starting materials defines the choice of isolation technique. In the present review, we have given an overview of the structure of the blood-brain barrier and its disruption in glioblastoma. This review provided a comprehensive insight into novel passive and active drug delivery techniques to overcome the blood-brain barrier, emphasizing exosomes as an excellent emerging drug, gene, and effective molecule delivery vehicle used in glioblastoma therapy.


Assuntos
Neoplasias Encefálicas , Exossomos , Glioblastoma , Humanos , Barreira Hematoencefálica/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Exossomos/patologia , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos/métodos
4.
Exp Cell Res ; 418(2): 113294, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870535

RESUMO

New research has indicated that long non-coding RNAs (lncRNAs) play critical roles in a broad range of biological processes, including the pathogenesis of many complex human diseases, including cancer. The detailed regulation mechanisms of many lncRNAs in cancer initiation and progression have yet to be discovered, even though a few of lncRNAs' functions in cancer have been characterized. In the present study, we summarize recent advances in the mechanisms and functions of lncRNAs in cancer. We focused on the roles of newly-identified lncRNAs as oncogenes and tumor suppressors, as well as the potential pathways these molecules could play. The paper also discusses their potential uses as biomarkers for the diagnosis and prognosis of cancer.


Assuntos
Neoplasias , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Oncogenes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Mol Biol Res Commun ; 11(1): 11-20, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35463822

RESUMO

The epithelial-to-mesenchymal transition (EMT) is a unique process resulting in enhanced cell motility, invasiveness, and metastasis in cancer. The EMT is regulated by several transcription factors, including Snail and Slug, which exert crucial roles during cancer progression. We have studied the effects of Docetaxel as the first-line chemotherapy agent for prostate cancer, and Telmisartan as an anti-hypertensive drug on the expression level of Snail and Slug. In addition, the effects of Docetaxel, Telmisartan and their combination on cancer cell proliferation were investigated. The PC3, DU145, MDA-MB468, and HEK cell lines were used for this study. Quantitative RT-PCR analysis and MTT assay were used to study the expression of Snail and Slug level and cell proliferative assay, respectively. We found that a combination of Docetaxel + Telmisartan effectively inhibits the cell proliferation in cancerous cells in comparison with each drug alone (P<0.05). Furthermore, in these cell lines, Docetaxel, Telmisartan and their combination significantly diminished the expression level of Snail and Slug genes compared to control cells (P<0.001), however, in the HEK cell line, this effect was seen only in the combination group. Our data imply that Telmisartan and its combination with Docetaxel exert strong inhibitory effects on the expression level of Snail and Slug genes. Also, these drugs and their combination could inhibit cancer cell proliferation. In conclusion, the combination of Telmisartan and Docetaxel has the potential to suppress the metastasis of prostate and breast cancer cells.

6.
J Cell Mol Med ; 26(8): 2392-2403, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224849

RESUMO

This study aimed to investigate if Telmisartan as a novel N-cadherin antagonist, can overcome cell migration of cancer cells. We investigated the mechanism and influence of Docetaxel and Telmisartan (as an analogous to ADH-1, which is a well-known N-cadherin antagonist) on cancer cells. The effect of ADH-1 and Telmisartan on cell attachment in PC3, DU145, MDA-MB-468 cell lines using recombinant human N-cadherin was studied. Cell viability assay was performed to examine the anti-proliferative effects of Telmisartan, ADH-1 and Docetaxel. Migration was examined via wound healing assay, and apoptosis was determined by flow cytometry. The expression of AKT-1 as a downstream gene of N-cadherin signalling pathway was assayed by real-time PCR. Treatment of PC3, MDA-MB-468 and DU145 cells with Telmisartan (0.1 µM) and ADH-1 (40 µM) resulted in 50%, 58% and approximately 20% reduction in cell attachment to N-cadherin coated plate respectively. It shows reduction of cell attachment in PC3 and MDA-MB-468 cell lines appeared to be more sensitive than that of DU145 cells to the Telmisartan and ADH-1 treatments. Telmisartan (0.1 µM) and Docetaxel (0.01 nM) significantly reduced cell migration in PC3 and MDA-MB-468 cell lines compared with the control group. Using Real-time PCR, we found that Telmisartan, Docetaxel and ADH-1 had significant influence on the AKT-1 mRNA level. The results of the current study for the first time suggest that, Telmisartan, exerts anti-proliferation and anti-migration effects by targeting antagonistically N-cadherin. Also, these data suggest that Telmisartan as a less expensive alternative to ADH-1 could potentiate Docetaxel anticancer effects.


Assuntos
Caderinas , Oligopeptídeos , Peptídeos Cíclicos , Proteínas Proto-Oncogênicas c-akt , Telmisartan , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Docetaxel/farmacologia , Humanos , Terapia de Alvo Molecular , Oligopeptídeos/farmacologia , Células PC-3 , Peptídeos Cíclicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Telmisartan/farmacologia
7.
Mol Cell Biochem ; 476(11): 4081-4092, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34273059

RESUMO

Glioma, as one of the most severe human malignancies, is defined as the Central Nervous System's (CNS) tumors. Glioblastoma (GBM) in this regard, is the most malignant type of gliomas. There are multiple therapeutic strategies to cure GBM, for which chemotherapy is often the first-line treatment. Still, various cellular processes, such as uncontrolled proliferation, invasion and metastasis, may disturb the treatment efficacy. Drug resistance is another process in this way, which can also cause undesirable effects. Thereupon, identifying the mechanisms, involved in developing drug resistance and the relevant mechanisms can be very helpful in GBM management. The discovery of exosomal non-coding RNAs (ncRNAs), RNA molecules that can be transferred between the cells and different tissues using the exosomes, was a milestone in this regard. It has been revealed that the key exosomal ncRNAs, including circular RNAs, microRNAs, and long ncRNAs, are able to modulate GBM drug resistance through different signaling pathways or by affecting regulatory proteins and their corresponding genes. Nowadays, researchers are trying to overcome the limitations of chemotherapy by targeting these RNA molecules. Accordingly, this review aims to clarify the substantial roles of exosomal ncRNAs in GBM drug resistance and involved mechanisms.


Assuntos
Exossomos/genética , Glioblastoma/tratamento farmacológico , MicroRNAs/genética , RNA Longo não Codificante/genética , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos , Exossomos/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Terapia de Alvo Molecular
8.
J Diabetes Metab Disord ; 19(2): 767-774, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33520802

RESUMO

BACKGROUND: Serum lipids and glycemic dysregulation are the known characteristics of ß- thalassemia major (ß-TM). Here, we evaluated the association of these disorders with insulin resistance (IR), oxidative stress and serum ferritin values in patients with ß-TM. METHODS: This case-control study was performed in thalassemia unite of Darab Hospital (Darab, Fars province, Iran) from December 2016 to December 2017. Forty-eight patients with ß-TM and 33 healthy individuals were enrolled. Serum fasting blood sugar (FBS), insulin, total cholesterol (TC), triglyceride (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), ischemia modified albumin (IMA), and ferritin were measured. The values of HOMA-IR, LDL: TG ratio, atherogenic index (AI), atherogenic index of plasma (AIP), and coronary risk index (CRI) were calculated. RESULTS: The level of serum ferritin, IMA, FBS, TG, AIP, LDL: TG ratio, and the prevalence of IR (HOMA-IR < 3.8) were significantly higher while TC, LDL-C, HDL-C, and AI were significantly lower in the patients compared to the control group. In patient with ß-TM, serum ferritin revealed to have a positive association with serum insulin, HOMA-IR, AI, and CRI levels while serum IMA showed positive association with TG and AIP and inverse association with hypocholesterolemia. HOMA-IR had positive correlation with HDL levels. CONCLUSIONS: Oxidative stress and iron overload are predictors of serum glycemic and lipid dysregulation, suggesting possible beneficial effect of antioxidants and efficient iron chelating therapy in reducing the risk of metabolic disorders in ß- thalassemia.

9.
J Diabetes Metab Disord ; 18(2): 543-549, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31890680

RESUMO

BACKGROUND: Melatonin is a well-known free radical scavenger. The present study aimed to investigate the effects of melatonin treatment on the antioxidant status in the lenticular tissue of streptozotocin (STZ)-induced diabetic rats. METHODS: Thirty-four male rats were randomly divided into four groups as follows: healthy control rats (group 1, n = 10); diabetic control rats (group 2, n = 10); melatonin-treated (5 mg/kg·day) diabetic rats (group 3, n = 10) and melatonin-treated (5 mg/kg·day) healthy rats (group 4, n = 4). Diabetes was induced by injection of streptozotocin (50 mg/kg, ip). Following 8-weeks of melatonin treatment, all rats were killed and the blood plasma and their lenses were stored at -70 °C for antioxidant enzyme activities assay and biochemical determination. RESULTS: The plasma glucose and lens malondialdehyde (MDA) increased significantly in the rats of group 2 as compared to the group 1. Also, a significant decrease in the levels of catalase (CAT) and glutathione reductase (GR) activities in the lenses and plasma reduced glutathione (GSH) was found. However, the levels of lenticular MDA (not significant) and the plasma glucose significantly decreased in the rats of group 3 compared to the group 2. Besides, the levels of CAT, GR in the rats lens and plasma GSH increased significantly. CONCLUSION: Diabetes mellitus induced hyperglycemia and oxidative stress, whereas melatonin decreased the blood glucose levels and lipid peroxidation and increased the activities of antioxidant enzymes in diabetic rat lenses.

10.
J Diabetes Metab Disord ; 18(2): 533-541, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31890679

RESUMO

PURPOSE: Glucose-6-phosphate dehydrogenase (G6PD) is the regulating enzyme in the pentose phosphate pathway. A link between the activity of G6PD and diabetes mellitus has previously been reported. The association of G6PD activity with the pathogenesis of gestational diabetes mellitus (GDM) has not yet been investigated. The aim of the present study was to investigate the association of erythrocyte G6PD activity with major characteristics of GDM. METHODS: This case-control study was conducted at Hafez Hospital, Shiraz University of Medical Sciences, Shiraz, Iran from March to November 2017. Eighty-four age-matched pregnant women including GDM (n = 33), impaired glucose tolerance (IGT; n = 7), and normal glucose tolerance (NGT; n = 44) subjects were enrolled in this study. The levels of erythrocyte G6PD activity, fasting plasma glucose (FPG), insulin, malondialdehyde (MDA), and ferric reducing power (FRAP) of serum were measured. The level of homeostasis model for the assessment of insulin resistance (HOMA-IR) was calculated. The data were analyzed using SPSS software. P < 0.05 was considered statistically significant. RESULTS: The values of FPG, insulin, HOMA-IR, G6PD activity, and FRAP were significantly higher in GDM patients compared to NGT subjects. G6PD activity was correlated with FPG ((r = 0.224; P = 0.041). Binary logistic regression analysis revealed independent association of body mass index >25.88 [OR = 3.23, 95% CI 1.071-9.75, P = 0.037], HOMA- IR >2.33 [OR = 7.15, 95% CI 2.26-22.56, P < 0.001], and G6PD activity>21.17 U/g Hb [OR = 4.63, 95% CI 1.49-14.38, P = 0.008] with an increased risk of GDM. No significant change was observed among serum MDA levels in the three groups. CONCLUSION: The findings demonstrate that increased G6PD activity is positively associated with the risk of GDM.

11.
Iran J Med Sci ; 43(5): 506-513, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30214103

RESUMO

BACKGROUND: The synergistic effects of valproic acid (VPA), lithium (Li), and celecoxib (CX) have been shown in combination therapy against the proliferation and metastasis of numerous cancers. Angiogenesis plays a critical role in the pathogenesis of tumor growth and metastasis. The aim of the present study was to evaluate the antiangiogenic effects of VPA, lithium chloride (LiCl), and CX, alone or in 2-by-2 combinations, using the chicken chorioallantoic membrane (CAM) assay. METHODS: Fertilized chicken eggs were randomly divided into 10 groups: control, VPA (1.8 and 3.6 µmol/CAM), Li (0.15 and 0.60 µmol/CAM), CX (0.02 and 0.08 µmol/CAM), VPA+Li, VPA+CX, and CX+Li (n=10 per group). A window was made on the eggshells and the CAMs were exposed to a filter disk containing VPA, LiCl, and CX, alone or in 2-by-2 combinations. The control CAMs were treated with distilled water (vehicle). Three days after the treatment, the number of vessel branch points was counted in each CAM. The data were analyzed using SPSS, version 15.One-way ANOVA, followed by the Tukey tests, was used to compare the groups. A P<0.05 was considered a statistically significant difference between the groups. RESULTS: According to the results, all the tested drugs decreased the number of the vessel branch points in a dose-dependent manner compared to the control group (P<0.001). In addition, combinations of the drugs were more effective in decreasing angiogenesis than the use of each drug alone. CONCLUSION: These findings suggest that 2-by-2 combinations of VPA, CX, and LiCl can be considered an effective antiangiogenesis therapeutic modality.

12.
Metab Brain Dis ; 33(3): 675-680, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29270710

RESUMO

The role of oxidative stress in the pathogenesis of phenylketonuria (PKU)-associated disorders has been implicated. Ischemia modified albumin (IMA) is a modified form of serum albumin, which is produced under the conditions of oxidative stress. The aim of this study was to measure the serum level of IMA in the PKU patients and to investigate its ability in predicting the status of oxidative stress in these patients. Fifty treated-PKU patients and fifty age- and sex-matched healthy subjects were included in the study. The blood samples were obtained and the serum level of phenylalanine (Phe) was measured using reverse phase HPLC method. The levels of IMA, malondialdehyde (MDA), gamma-glutamyl transferase (GGT) activity, and uric acid (UA) were determined using colorimetric methods. The levels of serum Phe, IMA, and MDA were significantly higher (p < 0.001) and the level of UA (p < 0.05) was lower in the PKU patients compared to control group. Serum IMA level was positively correlated with MDA (r = 0.585, p < 0.001) and UA (r = 0.6, p < 0.001). An inverse relationship was observed between the serum level of IMA and Phe (r = - 0.410, p < 0. 01). Results of the present study suggest that serum IMA level could be used as a novel marker for the evaluation of oxidative stress in the PKU patients.


Assuntos
Biomarcadores/sangue , Estresse Oxidativo/fisiologia , Fenilcetonúrias/sangue , Albumina Sérica/metabolismo , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Malondialdeído/sangue , Fenilcetonúrias/diagnóstico , Albumina Sérica Humana , Ácido Úrico/sangue
13.
Res Pharm Sci ; 12(5): 391-400, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28974977

RESUMO

Sodium benzoate (SB) is one of the food additives and preservatives that prevent the growth of fungi and bacteria. SB has been shown to improve the symptoms of neurodegenerative disease such as Alzheimer's disease. The aim of this study was to evaluate the effect of SB on the cell survival and cellular antioxidant indices after exposure to aluminum maltolate (Almal) in PC12 cell line as a model of neurotoxicity. The cells exposed to different concentrations of SB (0.125 to 3 mg/mL) in the presence of Almal (500 µM) and cell viability, the level of reactive oxygen species (ROS), glutathione content and catalase activity were measured. The results showed that low concentrations of SB caused an increase in the cell survival, but cell viability was reduced in high concentrations. SB could neither prevent the level of ROS production nor change glutathione content. SB (0.5 mg/mL) significantly increased the catalase enzyme activity as compared to the Almal. This study suggested that SB did not completely protect the cell to aluminum-induced free radicals toxicity. Possibly SB improves the symptoms of neurodegenerative disease by other mechanisms.

14.
Iran J Med Sci ; 42(4): 369-376, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28761203

RESUMO

BACKGROUND: Glucose-induced protein glycation has been implicated in the progression of diabetic complications and age-related diseases. The anti-glycation potential of polyphenol-rich plant extracts has been shown previously. Bunium Persicum has been demonstrated to possess a high level of polyphenols. The aim of current in vitro study was to determine the possible inhibitory effect of Bunium Persicum hydroalcoholic extract (BPE) on glucose-induced bovine serum albumin (BSA) glycation, oxidation, and aggregation. METHODS: Folin-Ciocalteu assay was used to measure the content of total phenolic compounds of BPE. To test the in vitro effect of BPE on the formation of glycated BSA, thiol group oxidation, and protein aggregation of BSA, various concentrations of BPE were incubated with BSA and glucose at 37 °C for 72 hr. Glycation, thiol group oxidation, and aggregation of BSA were then measured using thiobarbituric acid, 2, 4-dinitrophenylhydrazine, and Congo red colorimetric methods, respectively. Data were analyzed using the SPSS software (version 16.0). One-way ANOVA followed by Tukey's post hoc test was used to compare group means. P<0.05 was accepted as the statistically significant difference between groups. RESULTS: The results demonstrated that the content of total phenolics of BPE was 122.41 mg gallic acid equivalents per gram dried extract. BPE (10, 15, and 30 µg/ml) significantly inhibited the formation of GA in a concentration-dependent manner. BPE also significantly decreased the levels of thiol group oxidation and BSA aggregation. CONCLUSION: The results showed that BPE has anti-glycation and antioxidant properties and might have therapeutic potentials in the prevention of glycation-mediated diabetic complications.

15.
Iran J Med Sci ; 41(4): 305-13, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27365552

RESUMO

BACKGROUND: The relationship between the high activity of aldose reductase (AR) and diabetic cataract formation has been previously investigated. The purpose of the present study was to determine the preventing effect of melatonin on streptozotocin (STZ)-induced diabetic cataract in rats. METHODS: 34 adult healthy male Sprague-Dawely rats were divided into four groups. Diabetic control and diabetic+melatonin received a single dose of STZ (50 mg/kg, intraperitoneally), whereas the normal control and normal+melatonin received vehicle. The melatonin groups were gavaged with melatonin (5 mg/kg) daily for a period of 8 weeks, whereas the rats in the normal control and diabetic control groups received only the vehicle. The rats' eyes were examined every week and cataract formation scores (0-4) were determined by slit-lamp microscope. At the end of the eighth week, the rats were sacrificed and markers of the polyol pathway and antioxidative (Glutathione, GSH) in their lens were determined. The levels of blood glucose, HbA1c and plasma malondialdhyde (MDA), as a marker of lipid peroxidation, were also measured. RESULTS: Melatonin prevented STZ-induced hyperglycemia by decreased blood glucose and HbA1c levels. Slit lamp examination indicated that melatonin delayed cataract progression in diabetic rats. The results revealed that melatonin feeding increased the GSH levels, decreased the activities of AR and sorbitol dehydrogenase (SDH) and sorbitol formation in catractous lenses as well as plasma MDA content. CONCLUSION: In summary, for the first time we demonstrated that melatonin delayed the formation and progression of cataract in diabetic rat lenses.

16.
Hemodial Int ; 19(1): 124-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25131305

RESUMO

Oxidative stress is considered as a major player in uremia-associated morbidity and mortality in hemodialysis (HD) patients. The aim of this study was to evaluate the effects of turmeric on oxidative stress markers in HD patients. This study was a prospective and double-blind randomized clinical trial. Fifty HD patients aged 18-60 years were recruited after fulfilling the inclusion criteria. Patients were randomly categorized into 2 groups: trial group received turmeric and control group received placebo for 8 weeks. Each patient in the trial group received turmeric, whereas the control group received starch for the same 8 weeks. Plasma malondialdehyde (MDA), red blood cell (RBC) antioxidant enzyme activities as glutathione peroxidase (GPX), glutathione reductase (GR), and catalase (CAT), cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, triglyceride, albumin, and hemoglobin were also measured before and after study. Although MDA level was reduced in both groups, the ratio of decrease was significantly higher in the turmeric group (0.2 vs. 0.1, P = 0.040). Three enzymes of GPX, GR, and CAT levels were increased in both groups; the ratio of increased was significantly higher in the turmeric group for the CAT enzyme (0.73 vs. 0.54; P = 0.02). Also, significant elevation of albumin level in the turmeric group compared with the control group was observed (P = 0.001). Regular ingestion of turmeric reduces plasma MDA and increases RBC CAT activity and plasma albumin levels in HD patients. Turmeric showed no adverse effects.


Assuntos
Curcuma/metabolismo , Falência Renal Crônica/tratamento farmacológico , Adolescente , Adulto , Método Duplo-Cego , Feminino , Humanos , Falência Renal Crônica/sangue , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...