Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404553, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770681

RESUMO

1D charge transport offers great insight into strongly correlated physics, such as Luttinger liquids, electronic instabilities, and superconductivity. Although 1D charge transport is observed in nanomaterials and quantum wires, examples in bulk crystalline solids remain elusive. In this work, it is demonstrated that spin-orbit coupling (SOC) can act as a mechanism to induce quasi-1D charge transport in the Ln3MPn5 (Ln = lanthanide; M = transition metal; Pn = Pnictide) family. From three example compounds, La3ZrSb5, La3ZrBi5, and Sm3ZrBi5, density functional theory calculations with SOC included show a quasi-1D Fermi surface in the bismuthide compounds, but an anisotropic 3D Fermi surface in the antimonide structure. By performing anisotropic charge transport measurements on La3ZrSb5, La3ZrBi5, and Sm3ZrBi5, it is demonstrated that SOC starkly affects their anisotropic resistivity ratios (ARR) at low temperatures, with an ARR of ≈4 in the antimonide compared to ≈9.5 and ≈22 (≈32 after magnetic ordering) in La3ZrBi5 and Sm3ZrBi5, respectively. This report demonstrates the utility of spin-orbit coupling to induce quasi-low-dimensional Fermi surfaces in anisotropic crystal structures, and provides a template for examining other systems.

2.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823766

RESUMO

Optical spectroscopy of quantum materials at ultralow temperatures is rarely explored, yet it may provide critical characterizations of quantum phases not possible using other approaches. We describe the development of a novel experimental platform that enables optical spectroscopic studies, together with standard electronic transport, of materials at millikelvin temperatures inside a dilution refrigerator. The instrument is capable of measuring both bulk crystals and micrometer-sized two-dimensional van der Waals materials and devices. We demonstrate its performance by implementing photocurrent-based Fourier transform infrared spectroscopy on a monolayer WTe2 device and a multilayer 1T-TaS2 crystal, with a spectral range available from the near-infrared to the terahertz regime and in magnetic fields up to 5 T. In the far-infrared regime, we achieve spectroscopic measurements at a base temperature as low as ∼43 mK and a sample electron temperature of ∼450 mK. Possible experiments and potential future upgrades of this versatile instrumental platform are envisioned.

3.
Sci Adv ; 9(12): eadd6167, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947621

RESUMO

Liquid-phase chemical exfoliation can achieve industry-scale production of two-dimensional (2D) materials for a wide range of applications. However, many 2D materials with potential applications in quantum technologies often fail to leave the laboratory setting because of their air sensitivity and depreciation of physical performance after chemical processing. We report a simple chemical exfoliation method to create a stable, aqueous, surfactant-free, superconducting ink containing phase-pure 1T'-WS2 monolayers that are isostructural to the air-sensitive topological insulator 1T'-WTe2. The printed film is metallic at room temperature and superconducting below 7.3 kelvin, shows strong anisotropic unconventional superconducting behavior with an in-plane and out-of-plane upper critical magnetic field of 30.1 and 5.3 tesla, and is stable at ambient conditions for at least 30 days. Our results show that chemical processing can make nontrivial 2D materials that were formerly only studied in laboratories commercially accessible.

4.
J Am Chem Soc ; 144(22): 9785-9796, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35613438

RESUMO

The link between crystal and electronic structure is crucial for understanding structure-property relations in solid-state chemistry. In particular, it has been instrumental in understanding topological materials, where electrons behave differently than they would in conventional solids. Herein, we identify 1D Bi chains as a structural motif of interest for topological materials. We focus on Sm3ZrBi5, a new quasi-one-dimensional (1D) compound in the Ln3MPn5 (Ln = lanthanide; M = metal; Pn = pnictide) family that crystallizes in the P63/mcm space group. Density functional theory calculations indicate a complex, topologically nontrivial electronic structure that changes significantly in the presence of spin-orbit coupling. Magnetic measurements show a quasi-1D antiferromagnetic structure with two magnetic transitions at 11.7 and 10.7 K that are invariant to applied field up to 9 T, indicating magnetically frustrated spins. Heat capacity, electrical, and thermoelectric measurements support this claim and suggest complex scattering behavior in Sm3ZrBi5. This work highlights 1D chains as an unexplored structural motif for identifying topological materials, as well as the potential for rich physical phenomena in the Ln3MPn5 family.

5.
Adv Mater ; 33(41): e2103476, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34436807

RESUMO

While several magnetic topological semimetals have been discovered in recent years, their band structures are far from ideal, often obscured by trivial bands at the Fermi energy. Square-net materials with clean, linearly dispersing bands show potential to circumvent this issue. CeSbTe, a square-net material, features multiple magnetic-field-controllable topological phases. Here, it is shown that in this material, even higher degrees of tunability can be achieved by changing the electron count at the square-net motif. Increased electron filling results in structural distortion and formation of charge density waves (CDWs). The modulation wave-vector evolves continuously leading to a region of multiple discrete CDWs and a corresponding complex "Devil's staircase" magnetic ground state. A series of fractionally quantized magnetization plateaus is observed, which implies direct coupling between CDW and a collective spin-excitation. It is further shown that the CDW creates a robust idealized nonsymmorphic Dirac semimetal, thus providing access to topological systems with rich magnetism.

6.
J Am Chem Soc ; 142(28): 12524-12535, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32628474

RESUMO

Defect chemistry is critical to designing high performance thermoelectric materials. In SnTe, the naturally large density of cation vacancies results in excessive hole doping and frustrates the ability to control the thermoelectric properties. Yet, recent work also associates the vacancies with suppressed sound velocities and low lattice thermal conductivity, underscoring the need to understand the interplay between alloying, vacancies, and the transport properties of SnTe. Here, we report solid solutions of SnTe with NaSbTe2 and NaBiTe2 (NaSnmSbTem+2 and NaSnmBiTem+2, respectively) and focus on the impact of the ternary alloys on the cation vacancies and thermoelectric properties. We find introduction of NaSbTe2, but not NaBiTe2, into SnTe nearly doubles the natural concentration of Sn vacancies. Furthermore, DFT calculations suggest that both NaSbTe2 and NaBiTe2 facilitate valence band convergence and simultaneously narrow the band gap. These effects improve the power factors but also make the alloys more prone to detrimental bipolar diffusion. Indeed, the performance of NaSnmBiTem+2 is limited by strong bipolar transport and only exhibits modest maximum ZTs ≈ 0.85 at 900 K. In NaSnmSbTem+2 however, the doubled vacancy concentration raises the charge carrier density and suppresses bipolar diffusion, resulting in superior power factors than those of the Bi-containing analogues. Lastly, NaSbTe2 incorporation lowers the sound velocity of SnTe to give glasslike lattice thermal conductivities. Facilitated by the favorable impacts of band convergence, vacancy-augmented hole concentration, and lattice softening, NaSnmSbTem+2 reaches high ZT ≈ 1.2 at 800-900 K and a competitive average ZTavg of 0.7 over 300-873 K. The difference in ZT between two chemically similar compounds underscores the importance of intrinsic defects in engineering high-performance thermoelectrics.

7.
J Am Chem Soc ; 142(13): 6312-6323, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32160464

RESUMO

Subchalcogenides are uncommon compounds where the metal atoms are in unusually low formal oxidation states. They bridge the gap between intermetallics and semiconductors and can have unexpected structures and properties because of the exotic nature of their chemical bonding as they contain both metal-metal and metal-main group (e.g., halide, chalcogenide) interactions. Finding new members of this class of materials presents synthetic challenges as attempts to make them often result in phase separation into binary compounds. We overcome this difficulty by utilizing indium as a metal flux to synthesize large (millimeter scale) single crystals of novel subchalcogenide materials. Herein, we report two new compounds Ir2In8Q (Q = Se, Te) and compare their structural and electrical properties to the previously reported Ir2In8S analogue. Ir2In8Se and Ir2In8Te crystallize in the P42/mnm space group and are isostructural to Ir2In8S, but also have commensurately modulated (with q vectors q = 1/6a* + 1/6b* and q = 1/10a* + 1/10b* for Ir2In8Se and Ir2In8Te, respectively) low-temperature phase transitions, where the chalcogenide anions in the channels experience a distortion in the form of In-Q bond alternation along the ab plane. Both compounds display re-entrant structural behavior, where the supercells appear on cooling but revert to the original subcell below 100 K, suggesting competing structural and electronic interactions dictate the overall structure. Notably, these materials are topological semimetal candidates with symmetry-protected Dirac crossings near the Fermi level and exhibit high electron mobilities (∼1500 cm2 V-1 s-1 at 1.8 K) and moderate carrier concentrations (∼1020 cm-3) from charge transport measurements. This work highlights metal flux as a synthetic route to high quality single crystals of novel intermetallic subchalcogenides with Dirac semimetal behavior.

8.
J Am Chem Soc ; 141(48): 19130-19137, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697089

RESUMO

Dirac and Weyl semimetals host exotic quasiparticles with unconventional transport properties, such as high magnetoresistance and carrier mobility. Recent years have witnessed a huge number of newly predicted topological semimetals from existing databases; however, experimental verification often lags behind such predictions. Common reasons are synthetic difficulties or the stability of predicted phases. Here, we report the synthesis of the type-II Dirac semimetal Ir2In8S, an air-stable compound with a new structure type. This material has two Dirac crossings in its electronic structure along the Γ-Z direction of the Brillouin zone. We further show that Ir2In8S has a high electron carrier mobility of ∼10 000 cm2/(V s) at 1.8 K and a large, nonsaturating transverse magnetoresistance of ∼6000% at 3.34 K in a 14 T applied field. Shubnikov de-Haas oscillations reveal several small Fermi pockets and the possibility of a nontrivial Berry phase. With its facile crystal growth, novel structure type, and striking electronic structure, Ir2In8S introduces a new material system to study topological semimetals and enable advances in the field of topological materials.

9.
Chem Sci ; 11(3): 870-878, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34123065

RESUMO

Subchalcogenides are uncommon, and their chemical bonding results from an interplay between metal-metal and metal-chalcogenide interactions. Herein, we present Ir6In32S21, a novel semiconducting subchalcogenide compound that crystallizes in a new structure type in the polar P31m space group, with unit cell parameters a = 13.9378(12) Å, c = 8.2316(8) Å, α = ß = 90°, γ = 120°. The compound has a large band gap of 1.48(2) eV, and photoemission and Kelvin probe measurements corroborate this semiconducting behavior with a valence band maximum (VBM) of -4.95(5) eV, conduction band minimum of -3.47(5) eV, and a photoresponse shift of the Fermi level by ∼0.2 eV in the presence of white light. X-ray absorption spectroscopy shows absorption edges for In and Ir do not indicate clear oxidation states, suggesting that the numerous coordination environments of Ir6In32S21 make such assignments ambiguous. Electronic structure calculations confirm the semiconducting character with a nearly direct band gap, and electron localization function (ELF) analysis suggests that the origin of the gap is the result of electron transfer from the In atoms to the S 3p and Ir 5d orbitals. DFT calculations indicate that the average hole effective masses near the VBM (1.19m e) are substantially smaller than the average electron masses near the CBM (2.51m e), an unusual feature for most semiconductors. The crystal and electronic structure of Ir6In32S21, along with spectroscopic data, suggest that it is neither a true intermetallic nor a classical semiconductor, but somewhere in between those two extremes.

10.
Inorg Chem ; 57(4): 2260-2268, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29411610

RESUMO

The field of mineralogy represents an area of untapped potential for the synthetic chemist, as there are numerous structure types that can be utilized to form analogues of mineral structures with useful optoelectronic properties. In this work, we describe the synthesis and characterization of two novel quaternary sulfides A1+xSn2-xBi5+xS10 (A = Li+, Na+). Though not natural minerals themselves, both compounds adopt the pavonite structure, which crystallizes in the C2/m space group and consists of two connected, alternating defect rock-salt slabs of varying thicknesses to create a three-dimensional lattice. Despite their commonalities in structure, their crystallography is noticeably different, as both structures have a heavy degree of site occupancy disorder that affects the actual positions of the atoms. The differences in site occupancy alter their electronic structures, with band gap values of 0.31(2) eV and 0.07(2) eV for the lithium and sodium analogues, respectively. LiSn2Bi5S10 exhibits ultralow thermal conductivity of 0.62 W m-1 K-1 at 723 K, and this result is corroborated by phonon dispersion calculations. This structure type is a promising host candidate for future thermoelectric materials investigation, as these materials have narrow band gaps and intrinsically low thermal conductivities.

11.
Inorg Chem ; 55(23): 12383-12390, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934405

RESUMO

Three doubly ordered double perovskites NaREMgWO6 (RE = La, Gd, Y) have been synthesized via traditional solid-state methods, doped with Eu3+, and characterized to evaluate their promise as Eu3+ phosphor hosts. NaYMgWO6, a new member of the family, was found to crystallize in the P21 space group and is isostructural with NaGdMgWO6. Emissions characteristic of Eu3+ ions (5D0 → 7F4,3,2,1,0) were observed, with the most intense transition being the 5D0 → 7F2 transition near 615 nm. Substitution of Eu3+ onto a more compressed RE site in the NaY1-xEuxMgWO6 and NaGd1-xEuxMgWO6 hosts results in a blue shift of the charge-transfer excitation band and an increase in the intensity of the 5D0 → 7F2 transition compared to NaLa1-xEuxMgWO6. All of the hosts can incorporate high concentrations of Eu3+ before concentration quenching is observed. When the rare-earth ion is either Gd3+ or Y3+, good energetic overlap between the Eu3+ charge-transfer band and the absorption of the host lattice results in sensitization and energy transfer from the perovskite host lattice to the Eu3+ activator sites. These hosts display comparable if not better luminescence than Y2O3:Eu3+, a commonly used commercial standard, demonstrating their promise as red phosphors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...