Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Alcohol Depend ; 248: 109920, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224676

RESUMO

Fibroblast growth factor 2 (FGF2) is involved in the development and maintenance of the brain dopamine system. We previously showed that alcohol exposure alters the expression of FGF2 and its receptor, FGF receptor 1 (FGFR1) in mesolimbic and nigrostriatal brain regions, and that FGF2 is a positive regulator of alcohol drinking. Here, we determined the effects of FGF2 and of FGFR1 inhibition on alcohol consumption, seeking and relapse, using a rat operant self-administration paradigm. In addition, we characterized the effects of FGF2-FGFR1 activation and inhibition on mesolimbic and nigrostriatal dopamine neuron activation using in vivo electrophysiology. We found that recombinant FGF2 (rFGF2) increased the firing rate and burst firing activity of dopaminergic neurons in the mesolimbic and nigrostriatal systems and led to increased operant alcohol self-administration. In contrast, the FGFR1 inhibitor PD173074 suppressed the firing rate of these dopaminergic neurons, and reduced operant alcohol self-administration. Alcohol seeking behavior was not affected by PD173074, but this FGFR1 inhibitor reduced post-abstinence relapse to alcohol consumption, albeit only in male rats. The latter was paralleled by the increased potency and efficacy of PD173074 in inhibiting dopamine neuron firing. Together, our findings suggest that targeting the FGF2-FGFR1 pathway can reduce alcohol consumption, possibly via altering mesolimbic and nigrostriatal neuronal activity.


Assuntos
Dopamina , Fator 2 de Crescimento de Fibroblastos , Ratos , Masculino , Animais , Dopamina/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Etanol/farmacologia , Etanol/metabolismo , Consumo de Bebidas Alcoólicas/genética , Recidiva , Área Tegmentar Ventral
2.
Mol Psychiatry ; 27(12): 4861-4868, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36045279

RESUMO

Trace amine-associated receptor 1 (TAAR1) has been recently identified as a target for the future antidepressant, antipsychotic, and anti-addiction drugs. Full (e.g. RO5256390) and partial (e.g. RO5263397) TAAR1 agonists showed antidepressant-, antipsychotic- and anti-addiction-like behavioral effects in rodents and primates. Acute RO5256390 suppressed, and RO5263397 stimulated serotonin (5-HT) neurons of the dorsal raphe nucleus (DRN) and dopamine neurons of the ventral tegmental area (VTA) in brain slices, suggesting that the behavioral effects of TAAR1 ligands involve 5-HT and dopamine. For more comprehensive testing of this hypothesis, we examined acute and chronic effects of RO5256390 and RO5263397 on monoamine neurons in in vivo conditions. Excitability of 5-HT neurons of the DRN, noradrenaline neurons of the locus coeruleus (LC), and dopamine neurons of the VTA was assessed using single-unit electrophysiology in anesthetized rats. For acute experiments, RO5256390 and RO5263397 were administered intravenously; neuronal excitability after RO5256390 and RO5263397 administration was compared to the basal activity of the same neuron. For chronic experiments, RO5256390 was administered orally for fourteen days prior to electrophysiological assessments. The neuronal excitability in RO5256390-treated rats was compared to vehicle-treated controls. We found that acute RO5256390 inhibited 5-HT and dopamine neurons. This effect of RO5256390 was reversed by the subsequent and prevented by the earlier administration of RO5263397. Acute RO5256390 and RO5263397 did not alter the excitability of LC noradrenaline neurons in a statistically significant way. Chronic RO5256390 increased excitability of 5-HT neurons of the DRN and dopamine neurons of the VTA. In conclusion, the putative antidepressant and antipsychotic effects of TAAR1 ligands might be mediated, at least in part, via the modulation of excitability of central 5-HT and dopamine neurons.


Assuntos
Antipsicóticos , Receptores Acoplados a Proteínas G , Animais , Ratos , Antipsicóticos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Norepinefrina , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/farmacologia
3.
Gen Physiol Biophys ; 41(3): 255-262, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35616005

RESUMO

The concentrations of circulating glucocorticoids are regulated by their synthesis and metabolism. Cytochrome P450 (CYP), primarily expressed in the liver, is one of the main metabolizers of glucocorticoids. Since glucocorticoids, as well as monoamines, are fundamental in stress, the link between hepatic glucocorticoid metabolism and central monoamine transmission might be important in pathophysiology of stress-related disorders. We had previously reported that CYP inhibition by proadifen (SKF525) led to the inhibition of central serotonin (5-HT) neurons. The aim of this study was to investigate the effect of SKF525 on the excitability of central catecholamine neurons. Adult male Wistar rats were administered SKF525 forty-eight, twenty-four, and one hour before electrophysiological assessments. Control animals were injected saline. Rats were anesthetized with chloral hydrate and glass electrodes were inserted into the locus coeruleus (LC) or ventral tegmental area (VTA). Noradrenaline neurons of the LC and dopamine of the VTA neurons were identified, and their firing activity was recorded. It was found that the SKF525 enhanced the excitability of noradrenaline and reduced the excitability of dopamine neurons. We suggest that corticosterone-induced inhibition of 5-HT neurons underlines, at least in part, the ability of SKF525 to stimulate noradrenaline neurons. The inhibitory effect of SKF525 on dopamine neurons might be in turn secondary to the stimulatory effect of this compound on noradrenaline neurons.


Assuntos
Catecolaminas , Proadifeno , Serotonina , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catecolaminas/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Glucocorticoides/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Norepinefrina/metabolismo , Proadifeno/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...