Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 188: 109867, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634766

RESUMO

BACKGROUND AND PURPOSE: KRAS is frequently mutated, and the Y-box binding protein 1 (YB-1) is overexpressed in colorectal cancer (CRC). Mutant KRAS (KRASmut) stimulates YB-1 through MAPK/RSK and PI3K/AKT, independent of epidermal growth factor receptor (EGFR). The p21-activated kinase (PAK) family is a switch-site upstream of AKT and RSK. The flavonoid compound fisetin inhibits RSK-mediated YB-1 signaling. We sought the most effective molecular targeting approach that interferes with DNA double strand break (DSB) repair and induces radiosensitivity of CRC cells, independent of KRAS mutation status. MATERIALS AND METHODS: KRAS activity and KRAS mutation were analyzed by Ras-GTP assay and NGS. Effect of dual targeting of RSK and AKT (DT), the effect of fisetin as well as targeting PAK by FRAX486 and EGFR by erlotinib on YB-1 activity was tested by Western blotting after irradiation in vitro and ex vivo. Additionally, the effect of DT and FRAX486 on DSB repair pathways was tested in cells expressing reporter constructs for the DSB repair pathways by flow cytometry analysis. Residual DSBs and clonogenicity were examined by γH2AX- and clonogenic assays, respectively. RESULTS: Erlotinib neither blocked DSB repair nor inhibited YB-1 phosphorylation under KRAS mutation condition in vitro and ex vivo. DT and FRAX486 effectively inhibited YB-1 phosphorylation independent of KRAS mutation status and diminished homologous recombination (HR) and alternative non-homologous end joining (NHEJ) repair. DT and FRAX486 inhibited DSB repair in CaCo2 but not in isogenic KRASG12V cells. Fisetin inhibited YB-1 phosphorylation, blocked DSB repair and increased radiosensitivity, independent of KRAS mutation status. CONCLUSION: Combination of fisetin with radiotherapy may improve CRC radiation response, regardless of KRASmut status.

2.
Strahlenther Onkol ; 199(12): 1110-1127, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37268766

RESUMO

Y­box binding protein­1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB­1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB­1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB­1 activity. In this review paper, we highlight the importance of the KRAS/YB­1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias/genética , Neoplasias/terapia , Transdução de Sinais , Fosforilação , Mutação
3.
J Exp Clin Cancer Res ; 41(1): 256, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35989353

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is associated with aggressiveness and a poor prognosis. Besides surgery, radiotherapy serves as the major treatment modality for TNBC. However, response to radiotherapy is limited in many patients, most likely because of DNA damage response (DDR) signaling mediated radioresistance. Y-box binding protein-1 (YB-1) is a multifunctional protein that regulates the cancer hallmarks among them resisting to radiotherapy-induced cell death. Fisetin, is a plant flavonol of the flavonoid family of plant polyphenols that has anticancer properties, partially through inhibition of p90 ribosomal S6 kinase (RSK)-mediated YB-1 phosphorylation. The combination of fisetin with radiotherapy has not yet been investigated. METHODS: Activation status of the RSK signaling pathway in total cell lysate and in the subcellular fractions was analyzed by Western blotting. Standard clonogenic assay was applied to test post-irradiation cell survival. γH2AX foci assay and 3 color fluorescence in situ hybridization analyses were performed to study frequency of double-strand breaks (DSB) and chromosomal aberrations, respectively. The underlying repair pathways targeted by fisetin were studied in cells expressing genomically integrated reporter constructs for the DSB repair pathways via quantifying the expression of green fluorescence protein by flow cytometry. Flow cytometric quantification of sub-G1 cells and the protein expression of LC3-II were employed to measure apoptosis and autophagy, respectively. Kinase array and phosphoproteomics were performed to study the effect of fisetin on DDR response signaling. RESULTS: We showed that the effect of fisetin on YB-1 phosphorylation in TNBC cells is comparable to the effect of the RSK pharmacological inhibitors. Similar to ionizing radiation (IR), fisetin induces DSB. Additionally, fisetin impairs repair of IR-induced DSB through suppressing the classical non-homologous end-joining and homologous recombination repair pathways, leading to chromosomal aberration as tested by metaphase analysis. Effect of fisetin on DSB repair was partially dependent on YB-1 expression. Phosphoproteomic analysis revealed that fisetin inhibits DDR signaling, which leads to radiosensitization in TNBC cells, as shown in combination with single dose or fractionated doses irradiation. CONCLUSION: Fisetin acts as a DSB-inducing agent and simultaneously inhibits repair of IR-induced DSB. Thus, fisetin may serve as an effective therapeutic strategy to improve TNBC radiotherapy outcome.


Assuntos
Quebras de DNA de Cadeia Dupla , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , DNA/uso terapêutico , Dano ao DNA , Reparo do DNA , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Humanos , Hibridização in Situ Fluorescente , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia
4.
Radiother Oncol ; 174: 92-100, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35839938

RESUMO

BACKGROUND: AKT1 must be present and activated in the nucleus immediately after irradiation to stimulate AKT1-dependent double-strand breaks (DSB) repair through the fast non-homologous end-joining (NHEJ) repair process. We investigated the subcellular distribution of AKT1 and the role of HER family receptor members on the phosphorylation of nuclear AKT and radiation response. MATERIALS AND METHODS: Using genetic approaches and pharmacological inhibitors, we investigated the subcellular distribution of AKT1 and the role of HER family receptor members on the activation of nuclear AKT in non-small cell lung cancer (NSCLC) cells in vitro. ɤH2AX foci assay was applied to investigate the role of AKT activating signaling pathway on DSB repair. A mouse tumor xenograft model was used to study the impact of discovered signaling pathway activating nuclear AKT on the radiation response of tumors in vivo. RESULTS: Our data suggests that neither ionizing radiation (IR) nor stimulation with HER family receptor ligands induced rapid nuclear translocation of endogenous AKT1. GFP-tagged exogenous AKT1 translocated to the nucleus under un-irradiated conditions and IR did not stimulate this translocation. Nuclear translocation of GFP-AKT1 was impaired by the AKT inhibitor MK2206 as shown by its accumulation in the cytoplasmic fraction. IR-induced phosphorylation of nuclear AKT was primarily dependent on HER3 expression and tyrosine kinase activation of epidermal growth factor receptor. In line with the role of AKT1 in DSB repair, the HER3 neutralizing antibody patritumab as well as HER3-siRNA diminished DSB repair in vitro. Combination of patritumab with radiotherapy improved the effect of radiotherapy on tumor growth delay in a xenograft model. CONCLUSION: IR-induced activation of nuclear AKT occurs inside the nucleus that is mainly dependent on HER3 expression in NSCLC. These findings suggest that targeting HER3 in combination with radiotherapy may provide a logical treatment option for investigation in selected NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Anticorpos Neutralizantes/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Camundongos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno
5.
Int J Radiat Oncol Biol Phys ; 111(4): 1072-1087, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34166770

RESUMO

Multifunctional Y-box binding protein-1 (YB-1) is highly expressed in different human solid tumors and is involved in various cellular processes. DNA damage is the major mechanism by which radiochemotherapy (RCT) induces cell death. On induction of DNA damage, a multicomponent signal transduction network, known as the DNA damage response, is activated to induce cell cycle arrest and initiate DNA repair, which protects cells against damage. YB-1 regulates nearly all cancer hallmarks described to date by participating in DNA damage response, gene transcription, mRNA splicing, translation, and tumor stemness. YB-1 lacks kinase activity, and p90 ribosomal S6 kinase and AKT are the key kinases within the RAS/mitogen-activated protein kinase and phosphoinositide 3-kinase pathways that directly activate YB-1. Thus, the molecular targeting of ribosomal S6 kinase and AKT is thought to be the most effective strategy for blocking the cellular function of YB-1 in human solid tumors. In this review, after describing the prosurvival effect of YB-1 with a focus on DNA damage repair and cancer cell stemness, clinical evidence will be provided indicating an inverse correlation between YB-1 expression and the treatment outcome of solid tumors after RCT. In the interest of being concise, YB-1 signaling cascades will be briefly discussed and the current literature on YB-1 posttranslational modifications will be summarized. Finally, the current status of targeting the YB-1 axis, especially in combination with RCT, will be highlighted.


Assuntos
Neoplasias , Proteínas de Transporte , Linhagem Celular Tumoral , Quimiorradioterapia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
6.
PLoS One ; 15(4): e0230044, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32236143

RESUMO

LEFTY2 (endometrial bleeding associated factor; EBAF or LEFTYA), a cytokine released shortly before menstrual bleeding, is a negative regulator of cell proliferation and tumour growth. LEFTY2 down-regulates Na+/H+ exchanger activity with subsequent inhibition of glycolytic flux and lactate production in endometrial cancer cells. Glucose can be utilized not only for glycolysis but also for glycogen formation. Both glycolysis and glycogen formation require cellular glucose uptake which could be accomplished by the Na+ coupled glucose transporter-1 (SGLT1; SLC5A1). The present study therefore explored whether LEFTY2 modifies endometrial SGLT1 expression and activity as well as glycogen formation. Ishikawa and HEC1a cells were exposed to LEFTY2, SGLT1 and glycogen synthase (GYS1) transcript levels determined by qRT-PCR. SGLT1, GYS1 and phospho-GYS1 protein abundance was quantified by western blotting, cellular glucose uptake from 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) uptake, and cellular glycogen content utilizing an enzymatic assay and subsequent colorimetry. As a result, a 48-hour treatment with LEFTY2 significantly increased SGLT1 and GYS1 transcript levels as well as SGLT1 and GYS1 protein abundance in both Ishikawa and HEC1a cells. 2-NBDG uptake and cellular glycogen content were upregulated significantly in Ishikawa (type 1) but not in type 2 endometrial HEC1a cells, although there was a tendency of increased 2-NBDG uptake. Further, none of the effects were seen in human benign endometrial cells (HESCs). Interestingly, in both Ishikawa and HEC1a cells, a co-treatment with TGF-ß reduced SGLT1, GYS and phospho-GYS protein levels, and thus reduced glycogen levels and again HEC1a cells had no significant change. In conclusion, LEFTY2 up-regulates expression and activity of the Na+ coupled glucose transporter SGLT1 and glycogen synthase GYS1 in a cell line specific manner. We further show the treatment with LEFTY2 fosters cellular glucose uptake and glycogen formation and TGF-ß can negate this effect in endometrial cancer cells.


Assuntos
Neoplasias do Endométrio/metabolismo , Endométrio/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio/metabolismo , Fatores de Determinação Direita-Esquerda/fisiologia , Transportador 1 de Glucose-Sódio/metabolismo , Linhagem Celular Tumoral , Feminino , Glucose/metabolismo , Humanos , Sódio/metabolismo
7.
Mol Nutr Food Res ; 64(7): e1900390, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31976617

RESUMO

SCOPE: Urolithin A (UA) is a gut-derived bacterial metabolite from ellagic acid found in pomegranates, berries, and nuts can downregulate cell proliferation and migration. Cell proliferation and cell motility require actin reorganization, which is under control of ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1). The present study explores whether UA can modify actin cytoskeleton in cancer cells. METHODS: The effect of UA on globular over filamentous actin ratio is determined utilizing Western blotting, immunofluorescence, and flow cytometry. Rac1 and PAK1 levels are measured by quantitative RT-PCR and immunoblotting. As a result, a 24 h treatment with UA (20 µm) significantly decreased Rac1 and PAK1 transcript levels and activity, depolymerized actin and wound healing. The effect of UA on actin polymerization is mimicked by pharmacological inhibition of Rac1 and PAK1. The effect is also mirrored by knock down using siRNA. CONCLUSION: UA leads to disruption of Rac1 and Pak1 activity with subsequent actin depolymerization and migration. Thus, use of dietary UA in cancer prevention or as adjuvant therapy is promising.


Assuntos
Actinas/metabolismo , Antineoplásicos , Cumarínicos/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Microbioma Gastrointestinal , Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cumarínicos/metabolismo , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Humanos , Polimerização , Pirimidinas/farmacologia , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...