Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 62(11): 1594-1607, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37224425

RESUMO

The ERM (ezrin, radixin, and moesin) family of proteins and the related protein merlin participate in scaffolding and signaling events at the cell cortex. The proteins share an N-terminal FERM [band four-point-one (4.1) ERM] domain composed of three subdomains (F1, F2, and F3) with binding sites for short linear peptide motifs. By screening the FERM domains of the ERMs and merlin against a phage library that displays peptides representing the intrinsically disordered regions of the human proteome, we identified a large number of novel ligands. We determined the affinities for the ERM and merlin FERM domains interacting with 18 peptides and validated interactions with full-length proteins through pull-down experiments. The majority of the peptides contained an apparent Yx[FILV] motif; others show alternative motifs. We defined distinct binding sites for two types of similar but distinct binding motifs (YxV and FYDF) using a combination of Rosetta FlexPepDock computational peptide docking protocols and mutational analysis. We provide a detailed molecular understanding of how the two types of peptides with distinct motifs bind to different sites on the moesin FERM phosphotyrosine binding-like subdomain and uncover interdependencies between the different types of ligands. The study expands the motif-based interactomes of the ERMs and merlin and suggests that the FERM domain acts as a switchable interaction hub.


Assuntos
Domínios FERM , Neurofibromina 2 , Humanos , Neurofibromina 2/genética , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Ligantes , Estrutura Terciária de Proteína , Peptídeos
2.
Proc Natl Acad Sci U S A ; 119(18): e2121153119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482919

RESUMO

Peptide docking can be perceived as a subproblem of protein­protein docking. However, due to the short length and flexible nature of peptides, many do not adopt one defined conformation prior to binding. Therefore, to tackle a peptide docking problem, not only the relative orientation, but also the bound conformation of the peptide needs to be modeled. Traditional peptide-centered approaches use information about peptide sequences to generate representative conformer ensembles, which can then be rigid-body docked to the receptor. Alternatively, one may look at this problem from the viewpoint of the receptor, namely, that the protein surface defines the peptide-bound conformation. Here, we present PatchMAN (Patch-Motif AligNments), a global peptide-docking approach that uses structural motifs to map the receptor surface with backbone scaffolds extracted from protein structures. On a nonredundant set of protein­peptide complexes, starting from free receptor structures, PatchMAN successfully models and identifies near-native peptide­protein complexes in 58%/84% within 2.5 Å/5 Å interface backbone RMSD, with corresponding sampling in 81%/100% of the cases, outperforming other approaches. PatchMAN leverages the observation that structural units of peptides with their binding pocket can be found not only within interfaces, but also within monomers. We show that the bound peptide conformation is sampled based on the structural context of the receptor only, without taking into account any sequence information. Beyond peptide docking, this approach opens exciting new avenues to study principles of peptide­protein association, and to the design of new peptide binders. PatchMAN is available as a server at https://furmanlab.cs.huji.ac.il/patchman/.


Assuntos
Proteínas de Membrana , Peptídeos , Fenômenos Biofísicos , Proteínas de Membrana/metabolismo , Peptídeos/química , Ligação Proteica , Conformação Proteica
3.
Nat Commun ; 13(1): 176, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013344

RESUMO

Highly accurate protein structure predictions by deep neural networks such as AlphaFold2 and RoseTTAFold have tremendous impact on structural biology and beyond. Here, we show that, although these deep learning approaches have originally been developed for the in silico folding of protein monomers, AlphaFold2 also enables quick and accurate modeling of peptide-protein interactions. Our simple implementation of AlphaFold2 generates peptide-protein complex models without requiring multiple sequence alignment information for the peptide partner, and can handle binding-induced conformational changes of the receptor. We explore what AlphaFold2 has memorized and learned, and describe specific examples that highlight differences compared to state-of-the-art peptide docking protocol PIPER-FlexPepDock. These results show that AlphaFold2 holds great promise for providing structural insight into a wide range of peptide-protein complexes, serving as a starting point for the detailed characterization and manipulation of these interactions.


Assuntos
Redes Neurais de Computação , Peptídeos/química , Dobramento de Proteína , Proteínas/química , Software , Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas/metabolismo
4.
Methods Mol Biol ; 2165: 273-287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32621231

RESUMO

Structural characterizations of protein-peptide complexes may require further improvements. These may include reconstruction of missing atoms and/or structure optimization leading to higher accuracy models. In this work, we describe a workflow that generates accurate structural models of peptide-protein complexes starting from protein-peptide models in C-alpha representation generated using CABS-dock molecular docking. First, protein-peptide models are reconstructed from their C-alpha traces to all-atom representation using MODELLER. Next, they are refined using Rosetta FlexPepDock. The described workflow allows for reliable all-atom reconstruction of CABS-dock models and their further improvement to high-resolution models.


Assuntos
Simulação de Acoplamento Molecular/métodos , Peptídeos/química , Conformação Proteica , Sítios de Ligação , Peptídeos/metabolismo , Ligação Proteica , Software , Fluxo de Trabalho
5.
Nat Methods ; 17(7): 665-680, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483333

RESUMO

The Rosetta software for macromolecular modeling, docking and design is extensively used in laboratories worldwide. During two decades of development by a community of laboratories at more than 60 institutions, Rosetta has been continuously refactored and extended. Its advantages are its performance and interoperability between broad modeling capabilities. Here we review tools developed in the last 5 years, including over 80 methods. We discuss improvements to the score function, user interfaces and usability. Rosetta is available at http://www.rosettacommons.org.


Assuntos
Substâncias Macromoleculares/química , Modelos Moleculares , Proteínas/química , Software , Simulação de Acoplamento Molecular , Peptidomiméticos/química , Conformação Proteica
6.
Mol Vis ; 26: 299-310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32476814

RESUMO

Purpose: North Carolina macular dystrophy (NCMD) is an autosomal dominant maculopathy that is considered a non-progressive developmental disorder with variable expressivity. Our study aimed to clinically and genetically characterize macular dystrophy in a family (MOL1154) consisting of six affected subjects with a highly variable maculopathy phenotype in which no correlation between age and severity exists. Methods: Clinical characterization included visual acuity testing and electroretinography. Genetic analysis included Sanger sequencing and whole exome sequencing (WES). Results: WES analysis performed on DNA samples from two individuals revealed a heterozygous deletion of six nucleotides [c.2247_2252del; p.(Leu750_Lys751del)] in the CFH gene. Co-segregation analysis revealed that five of the six NCMD affected subjects carried this deletion, while one individual who had a relatively mild phenotype compatible with dry age-related macular degeneration (AMD) did not carry it. We subsequently analyzed the upstream region of PRDM13 that has previously been reported to be associated with NCMD and identified a unique heterozygous transversion (chr6:100040974A>C) located within the previously described suspected control region in all six affected individuals. This transversion is likely to cause NCMD. Conclusions: NCMD has a wide spectrum of clinical phenotypes that can overlap with AMD, making it challenging to correctly diagnose affected individuals and family members. The DNA sequence variant we found in the CFH gene of some of the affected family members may suggest some role as a modifier gene. However, this variant still does not explain the huge phenotypic variability of NCMD and needs to be studied in other and larger populations.


Assuntos
Distrofias Hereditárias da Córnea , Histona-Lisina N-Metiltransferase , Fatores de Transcrição , Adulto , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Pessoa de Meia-Idade , Defeitos da Visão Cromática/genética , Fator H do Complemento/química , Fator H do Complemento/genética , Distrofias Hereditárias da Córnea/sangue , Distrofias Hereditárias da Córnea/diagnóstico por imagem , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/fisiopatologia , Eletroculografia , Eletrorretinografia , Sequenciamento do Exoma , Angiofluoresceinografia , Testes Genéticos , Genótipo , Heterozigoto , Histona-Lisina N-Metiltransferase/sangue , Histona-Lisina N-Metiltransferase/genética , Judeus , Linhagem , Fenótipo , Filogenia , Distrofias Retinianas/genética , Deleção de Sequência , Tomografia de Coerência Óptica , Fatores de Transcrição/sangue , Fatores de Transcrição/genética
7.
Proteins ; 88(8): 1037-1049, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31891416

RESUMO

Peptide-protein docking is challenging due to the considerable conformational freedom of the peptide. CAPRI rounds 38-45 included two peptide-protein interactions, both characterized by a peptide forming an additional beta strand of a beta sheet in the receptor. Using the Rosetta FlexPepDock peptide docking protocol we generated top-performing, high-accuracy models for targets 134 and 135, involving an interaction between a peptide derived from L-MAG with DLC8. In addition, we were able to generate the only medium-accuracy models for a particularly challenging target, T121. In contrast to the classical peptide-mediated interaction, in which receptor side chains contact both peptide backbone and side chains, beta-sheet complementation involves a major contribution to binding by hydrogen bonds between main chain atoms. To establish how binding affinity and specificity are established in this special class of peptide-protein interactions, we extracted PeptiDBeta, a benchmark of solved structures of different protein domains that are bound by peptides via beta-sheet complementation, and tested our protocol for global peptide-docking PIPER-FlexPepDock on this dataset. We find that the beta-strand part of the peptide is sufficient to generate approximate and even high resolution models of many interactions, but inclusion of adjacent motif residues often provides additional information necessary to achieve high resolution model quality.


Assuntos
Dineínas/química , Simulação de Acoplamento Molecular , Glicoproteína Associada a Mielina/química , Peptídeos/química , Proteínas/química , Software , Sequência de Aminoácidos , Animais , Sítios de Ligação , Dineínas/metabolismo , Humanos , Ligação de Hidrogênio , Ligantes , Camundongos , Glicoproteína Associada a Mielina/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas/metabolismo , Projetos de Pesquisa , Homologia Estrutural de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...