Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 151(16): 164306, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675859

RESUMO

Nitroimidazoles are important compounds in medicine, biology, and the food industry. The growing need for their structural assignment, as well as the need for the development of the detection and screening methods, provides the motivation to understand their fundamental properties and reactivity. Here, we investigated the decomposition of protonated ronidazole [Roni+H]+ in low-energy and high-energy collision-induced dissociation (CID) experiments. Quantum chemical calculations showed that the main fragmentation channels involve intramolecular proton transfer from nitroimidazole to its side chain followed by a release of NH2CO2H, which can proceed via two pathways involving transfer of H+ from (1) the N3 position via a barrier of TS2 of 0.97 eV, followed by the rupture of the C-O bond with a thermodynamic threshold of 2.40 eV; and (2) the -CH3 group via a higher barrier of 2.77 eV, but with a slightly lower thermodynamic threshold of 2.24 eV. Electrospray ionization of ronidazole using deuterated solvents showed that in low-energy CID, only pathway (1) proceeds, and in high-energy CID, both channels proceed with contributions of 81% and 19%. While both of the pathways are associated with small kinetic energy release of 10-23 meV, further release of the NO• radical has a KER value of 339 meV.

2.
Rapid Commun Mass Spectrom ; 32(2): 113-120, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29108138

RESUMO

RATIONALE: Histidine (His) is an essential amino acid, whose side group consists of an aromatic imidazole moiety that can bind a proton or metal cation and act as a donor in intermolecular interactions in many biological processes. While the dissociation of His monomer ions is well known, information on the kinetic energy released in the dissociation is missing. METHODS: Using a new home-built electrospray ionization (ESI) source adapted to a double-focusing mass spectrometer of BE geometry, we investigated the fragmentation reactions of protonated and deprotonated His, [His + H]+ and [His - H]- , and the protonated His dimer [His2  + H]+ , accelerated to 6 keV in a high-energy collision with helium gas. We evaluated the kinetic energy release (KER) for the observed dissociation channels. RESULTS: ESI of His solution in positive mode led to the formation of His clusters [Hisn + H]+ , n = 1-6, with notably enhanced stability of the tetramer. [His + H]+ dissociates predominantly by loss of (H2 O + CO) with a KER of 278 meV, while the dominant dissociation channel of [His - H]- involves loss of NH3 with a high KER of 769 meV. Dissociation of [His2 + H]+ is dominated by loss of the monomer but smaller losses are also observed. CONCLUSIONS: The KER for HCOOH loss from both [His + H]+ and [His - H]- is similar at 278 and 249 meV, respectively, which suggests that the collision-induced dissociation takes place via a similar mechanism. The loss of COOH and C2 H5 NO2 from the dimer suggests that the dimer of His binds through a shared proton between the imidazole moieties.

3.
Beilstein J Nanotechnol ; 8: 2583-2590, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259873

RESUMO

Interactions of low-energy electrons with the FEBID precursor Cr(CO)6 have been investigated in a crossed electron-molecular beam setup coupled with a double focusing mass spectrometer with reverse geometry. Dissociative electron attachment leads to the formation of a series of anions by the loss of CO ligand units. The bare chromium anion is formed by electron capture at an electron energy of about 9 eV. Metastable decays of Cr(CO)5- into Cr(CO)4-, Cr(CO)4- into Cr(CO)3- and Cr(CO)3- into Cr(CO)2- are discussed. Electron-induced dissociation at 70 eV impact energy was found to be in agreement with previous studies. A series of Cr(CO) n C+ (0 ≤ n ≤ 3) cations formed by C-O cleavage is described for the first time. The metastable decay of Cr(CO)6+ into Cr(CO)5+ and collision-induced dissociation leading to bare Cr+, are discussed. In addition, doubly charged cations were identified and the ration between doubly and singly charged fragments was determined and compared with previous studies, showing considerable differences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...