Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(24): e202400168, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38380792

RESUMO

Processing CO2 into value-added chemicals and fuels stands as one of the most crucial tasks in addressing the global challenge of the greenhouse effect. In this study, we focused on the complex (dpp-bian)NiBr2 (where dpp-bian is di-isopropylphenyl bis-iminoacenaphthene) as a precatalyst for the electrochemical reduction of CO2 into CH4 as the sole product. Cyclic voltammetry results indicate that the realization of a catalytically effective pattern requires the three-electron reduction of (dpp-bian)NiBr2. The chemically reduced complexes [K(THF)6]+[(dpp-bian)Ni(COD)]- and [K(THF)6]+[(dpp-bian)2Ni]- were synthesized and structurally characterized. Analyzing the data from the electron paramagnetic resonance study of the complexes in solutions, along with quantum-chemical calculations, reveals that the spin density is predominantly localized at their metal centers. The superposition of trajectory maps of the electron density gradient vector field ∇ ρ r ${\nabla \rho \left({\bf r}\right)}$ and the electrostatic force density field F e s r ${{{\bf F}}_{{\rm e}{\rm s}}\left({\bf r}\right)}$ per electron, as well as the atomic charges, discloses that, within the first coordination sphere, the interatomic charge transfer occurs from the metal atom to the ligand atoms and that the complex anions can thus be formally described by the general formulae (dpp-bian)2-Ni+(COD) and (dpp-bian)2 -Ni+. It was also shown that the reduced nickel complexes can be oxidized by formic acid; resulting from this reaction, the two-electron and two-proton addition product dpp-bian-2H is formed.

2.
Discov Nano ; 18(1): 133, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903946

RESUMO

The work presents core-shell nanoparticles (NPs) built from the novel Cu(I) complexes with cyclic P2N2-ligands (1,5-diaza-3,7-diphosphacyclooctanes) that can visualize their entry into cancer and normal cells using a luminescent signal and treat cells by self-enhancing generation of reactive oxygen species (ROS). Variation of P- and N-substituents in the series of P2N2-ligands allows structure optimization of the Cu(I) complexes for the formation of the luminescent NPs with high chemical stability. The non-covalent modification of the NPs with triblock copolymer F-127 provides their high colloidal stability, followed by efficient cell internalization of the NPs visualized by their blue (⁓450 nm) luminescence. The cytotoxic effects of the NPs toward the normal and some of cancer cells are significantly lower than those of the corresponding molecular complexes, which correlates with the chemical stability of the NPs in the solutions. The ability of the NPs to self-enhanced and H2O2-induced ROS generation is demonstrated in solutions and intracellular space by means of the standard electron spin resonance (ESR) and fluorescence techniques correspondingly. The anticancer specificity of the NPs toward HuTu 80 cancer cells and the apoptotic cell death pathway correlate with the intracellular level of ROS, which agrees well with the self-enhancing ROS generation of the NPs. The enhanced level of ROS revealed in HuTu 80 cells incubated with the NPs can be associated with the significant level of their mitochondrial localization.

3.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762396

RESUMO

This paper illustrates how the size and type of substituent R in the phosphinate group of ferrocenyl bisphosphinic acids can affect conformational possibilities and coordination packing. It also demonstrates that H-phosphinate plays a key role in variational mobility, while Me- or Ph- substituents of the phosphinate group can only lead to 0D complexes or 1D coordination polymer. Overall, this paper provides valuable insights into the design and construction of coordination polymers based on ferrocene-contained linkers. It sheds light on how different reaction conditions and substituents can affect conformational possibilities and coordination packing, which could have significant implications for developing new polymers with unique properties.


Assuntos
Estruturas Metalorgânicas , Polímeros , Bandagens , Conformação Molecular
4.
Membranes (Basel) ; 13(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37505001

RESUMO

Sodium pectate derivatives with 25% replacement of sodium ions with nickel ions were obtained by carbonization to temperatures of 280, 550, and 800 °C, under special protocols in an inert atmosphere by carbonization to temperatures of 280, 550, and 800 °C. The 25% substitution is the upper limit of substitution of sodium for nickel ions, above which the complexes are no longer soluble in water. It was established that the sample carburized to 550 °C is the most effective active element in the hydrogen-oxidation reaction, while the sample carbonized up to 800 °C was the most effective in the oxygen-reduction reaction. The poor performance of the catalytic system involving the pectin coordination biopolymer carbonized up to 280 °C was due to loss of proton conductivity caused by water removal and mainly by two-electron transfer in one catalytic cycle of the oxygen-reduction reaction. The improved performance of the system with coordination biopolymer carbonized up to 550 °C was due to the better access of gases to the catalytic sites and four-electron transfer in one catalytic cycle. The (Ni-NaPG)800C sample contains metallic nickel nanoparticles and loose carbon, which enhances the electrical conductivity and gas capacity of the catalytic system. In addition, almost four-electron transfer is observed in one catalytic cycle of the oxygen-reduction reaction.

5.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240012

RESUMO

Redox properties of monoiminoacenaphthenes (MIANs) were studied using various electrochemical techniques. The potential values obtained were used for calculating the electrochemical gap value and corresponding frontier orbital difference energy. The first-peak-potential reduction of the MIANs was performed. As a result of controlled potential electrolysis, two-electron one-proton addition products were obtained. Additionally, the MIANs were exposed to one-electron chemical reduction by sodium and NaBH4. Structures of three new sodium complexes, three products of electrochemical reduction, and one product of the reduction by NaBH4 were studied using single-crystal X-ray diffraction. The MIANs reduced electrochemically by NaBH4 represent salts, in which the protonated MIAN skeleton acts as an anion and Bu4N+ or Na+ as a cation. In the case of sodium complexes, the anion radicals of MIANs are coordinated with sodium cations into tetranuclear complexes. The photophysical and electrochemical properties of all reduced MIAN products, as well as neutral forms, were studied both experimentally and quantum-chemically.


Assuntos
Sódio , Oxirredução , Ânions/química , Cátions/química
6.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985450

RESUMO

Heteroleptic 2,3,4,5-tetraphenyl-1-monophosphaferrocene [FeCp(η5-PC4Ph4)] was obtained at a 62% yield through the reaction of lithium 2,3,4,5-tetraphenyl-1-monophosphacyclopentadienide Li(PC4Ph4) (1) with [FeCp(η6-C6H5CH3)][PF6]. The structure of 1-monophosphaferrocene 2 and its W(CO)5-complex 3 were confirmed by multinuclear NMR and single-crystal X-ray diffraction study and further supported by DFT calculations. Cyclic voltammetry demonstrated that [FeCp(η5-PC4Ph4)] 2 has a quasi-reversible oxidation wave. The comparison of the properties of phosphaferrocene 2 with those of W(CO)5-complex 3 shows the possibility of changing the coordination type during oxidation.

7.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555177

RESUMO

Herein, the synthesis of ferrocene-containing salts is presented. Acylation of ferrocene (Fc) according to the Friedel-Crafts method led to ω-bromoacyl ferrocenes. The ω-bromoacyl ferrocenes were subsequently introduced to quaternization reaction with tri-tert-butyl phosphine, which resulted in phosphonium salts. Obtained phosphonium salts were characterized by physical methods. The electrochemical properties of phosphonium salts were studied by cyclic voltammetry (CV). It was found that the replacement of n-butyl fragments at the phosphorus atom by tert-butyl leads to a more anodic potential shift. In contrast to isolobal structures Fc-C(O)(CH2)nP+(n-Bu)3X- and Fc-(CH2)n+1P+(n-Bu)3X-, the CV curves of Fc-C(O)(CH2)nP+(t-Bu)3X- and Fc-(CH2)n+1P+(t-Bu)3X- did not show a large discrepancy between forward and reverse currents. The transformation of the C=O groups to CH2 fragments had a significant effect on the electrochemical properties of ferrocene salts, the oxidation potential of which is close to that of pure ferrocene.


Assuntos
Líquidos Iônicos , Metalocenos , Líquidos Iônicos/química , Sais/química , Oxirredução
8.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555210

RESUMO

A coordination polymer has been synthesized using ferrocene-based ligand-bearing phosphinic groups of 1,1'-ferrocene-diyl-bis(H-phosphinic acid)), and samarium (III). The coordination polymer's structure was studied by both single-crystal and powder XRD, TG, IR, and Raman analyses. For the first time, the Mössbauer effect studies were performed on ferrocenyl phosphinate and the polymer based on it. Additionally, the obtained polymer was studied by the method of cyclic and differential pulse voltammetry. It is shown that it has the most positive potential known among ferrocenyl phosphinate-based coordination polymers and metal-organic frameworks. Using the values of the oxidation potential, the polymer was oxidized and the ESR method verified the oxidized Fe(III) form in the solid state. Additionally, the effect of the size of the phosphorus atom substituent of the phosphinate group on the dimension of the resulting coordination compounds is shown.


Assuntos
Compostos Férricos , Polímeros , Metalocenos , Polímeros/química , Raios X , Oxirredução
9.
Beilstein J Org Chem ; 18: 1499-1504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405889

RESUMO

A triferrocenyl trithiophosphite was studied by X-ray single-crystal diffraction. Triferrocenyl trithiophosphite has nine axes of internal rotation: three P-S bonds, three C-S bonds and three Fe-cyclopentadienyl axes. Rotation around the P-S bonds results in a totally asymmetric structure with three ferrocenylthio groups exhibiting different orientations towards the phosphorus lone electron pair (LEP). A comparison of DFT calculations and X-ray diffraction data is presented, herein we show which conformations are preferred for a given ligand.

10.
Dalton Trans ; 51(48): 18603-18609, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36444982

RESUMO

Racemic and enantiopure ferrocene-based P-chiral amidophosphinates have been simply and stereoselectively synthesized by ortho-lithiation of rac- or (R)-Ugi's amine and further reaction with amidochlorophenylphosphinate Cl-P(O)(Ph)NEt2. This is the first example of an asymmetric reaction of ortho-lithiated Ugi's amine with tetracoordinated phosphorus(V) chlorides. The structures of rac- and (R)-Ugi's amine ferrocenyl(phenyl)phosphinic acid N,N-diethylamide have been extensively studied experimentally (NMR, X-ray analysis, electrochemistry). The CV first peak refers to the oxidation of the amine fragment, which is clearly seen when (R)-Ugi's amine ferrocenyl(phenyl)phosphinic acid N,N-diethylamide reacts with anhydrous acid. The addition of two equivalents of CF3COOH leads to the protonation of nitrogen atoms, and a classical reversible wave of oxidation of Fe(II) to Fe(III) is observed.

11.
Beilstein J Org Chem ; 18: 1338-1345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247980

RESUMO

A novel representative of sodium 3,4,5-triaryl-1,2-diphosphacyclopentadienide containing a chloro substituent in the meta-position of the aryl groups was obtained with a high yield based on the reaction of tributyl(1,2,3-triarylcyclopropenyl)phosphonium bromide and sodium polyphosphides. Further reaction of sodium 3,4,5-tris(3-chlorophenyl)-1,2-diphosphacyclopentadienide with [FeCp(η6-C6H5CH3)][PF6] complex gives a new 3,4,5-tris(3-chlorophenyl)-1,2-diphosphaferrocene. The electrochemical properties of 3,4,5-tris(3-chlorophenyl)-1,2-diphosphaferrocene were studied and compared to 3,4,5-tris(4-chlorophenyl)-1,2-diphosphaferrocene. It was found that the position of the chlorine atom on the aryl fragment has an influence on the reduction potential of 1,2-diphosphaferrocenes, while the oxidation potentials do not change.

12.
Molecules ; 26(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576996

RESUMO

A selective noble-metal-free molecular catalyst has emerged as a fruitful approach in the quest for designing efficient and stable catalytic materials for CO2 reduction. In this work, we report that a sodium pectate complex of copper (PG-NaCu) proved to be highly active in the electrocatalytic conversion of CO2 to CH4 in water. Stability and selectivity of conversion of CO2 to CH4 as a product at a glassy carbon electrode were discovered. The copper complex PG-NaCu was synthesized and characterized by physicochemical methods. The electrochemical CO2 reduction reaction (CO2RR) proceeds at -1.5 V vs. Ag/AgCl at ~10 mA/cm2 current densities in the presence of the catalyst. The current density decreases by less than 20% within 12 h of electrolysis (the main decrease occurs in the first 3 h of electrolysis in the presence of CO2). This copper pectate complex (PG-NaCu) combines the advantages of heterogeneous and homogeneous catalysts, the stability of heterogeneous solid materials and the performance (high activity and selectivity) of molecular catalysts.

13.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070061

RESUMO

The reaction of the redox active 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-BIAN) and iron(II) iodide in acetonitrile led to a new complex [(dpp-BIAN)FeIII2] (1). Molecular structure of 1 was determined by the single crystal X-ray diffraction analysis. The spin state of the iron cation in complex 1 at room temperature and the magnetic behavior of 1 in the temperature range of 2-300 K were studied using Mossbauer spectroscopy and magnetic susceptibility measurements, respectively. The neutral character of dpp-BIAN in 1 was confirmed by IR and UV spectroscopy. The electrochemistry of 1 was studied in solution and solid state using cyclic voltammetry. The generation of the radical anion form of the dpp-BIAN ligand upon reduction of 1 in a CH2Cl2 solution was monitored by EPR spectroscopy.

14.
Dalton Trans ; 49(47): 17252-17262, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33200162

RESUMO

The reaction between aryl substituted sodium 1,2,3-triphospholides or disodium bis(1,2,3-triphospholide) and [Fe(η6-(C6H5CH3)Cp]+[PF6]- in boiling diglyme results in pure 1,2,3-triphosphaferrocenes 1-3 or bis(1,2,3-triphosphaferrocene) 4, respectively, in good yields. The structure of all obtained 1,2,3-triphosphaferrocenes 1-4 has been extensively studied experimentally (NMR, UV-Vis spectroscopy, and X-ray analysis for 1 and 4) and quantum chemically. The electrochemical properties of 1,2,3-triphosphaferrocenes 1-4 in the solid state were studied for the first time and a reversible one-electron oxidation (E1/2 = 0.52-0.92 V vs. Fc+/Fc) was demonstrated for 1, 3, and 4. In the case of 1,4-bis(5-phenyl-4-(1,2,3-triphospaferrocenyl))benzene 4, consecutive oxidation in the solid state is observed in contrast to other 1,2,3-triphosphaferrocenes 1-3. According to the ESR data, the g-factor of the oxidized bis(1,2,3-triphosphaferrocene), 4 (g = 2.12) is different from the g-factors of oxidized 1,2,3-triphosphaferrocenes 1-3 (g = 2.01). This is the first example of multi(ferrocenyl) systems based on the phosphaferrocene motif, which in turn opens up a new fundamental platform for the preparation of compounds with stimuli-responsive properties.

15.
Inorg Chem ; 59(13): 9143-9151, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32573210

RESUMO

Nickel anions [(MeCN)Ni(CF3)3]- and [Ni(CF3)4]2- were prepared by the formal addition of 3 and 4 equiv, respectively, of AgCF3 to [(dme)NiBr2] in the presence of the [PPh4]+ counterion. Detailed insights into the electronic properties of these new compounds were obtained through the use of density functional theory (DFT) calculations, spectroscopy-oriented configuration interaction (SORCI) calculations, X-ray absorption spectroscopy, and cyclic voltammetry. The data collectively show that trifluoromethyl complexes of nickel, even in the most common oxidation state of nickel(II), are highly covalent systems whereby a hole is distributed on the trifluoromethyl ligands, surprisingly rendering the metal to a physically more reduced state. In the cases of [(MeCN)Ni(CF3)3]- and [Ni(CF3)4]2-, these complexes are better physically described as d9 metal complexes. [(MeCN)Ni(CF3)3]- is electrophilic and reacts with other nucleophiles such as phenoxide to yield the unsupported [(PhO)Ni(CF3)3]2- salt, revealing the broader potential of [(MeCN)Ni(CF3)3]- in the development of "ligandless" trifluoromethylations at nickel. Proof-in-principle experiments show that the reaction of [(MeCN)Ni(CF3)3]- with an aryl iodonium salt yields trifluoromethylated arene, presumably via a high-valent, unsupported, and formal organonickel(IV) intermediate. Evidence of the feasibility of such intermediates is provided with the structurally characterized [PPh4]2[Ni(CF3)4(SO4)], which was derived through the two-electron oxidation of [Ni(CF3)4]2-.

16.
RSC Adv ; 9(39): 22627-22635, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35519456

RESUMO

The present work introduces a facile synthetic route for efficient doping of [NiII(bpy) x ] into silica nanoparticles with various sizes and architectures. Variation of the latter results in different concentrations of the NiII complexes at the interface of the composite nanoparticles. The UV-Vis analysis of the nanoparticles reveals changes in the inner-sphere environment of the NiII complexes when embedded into the nanoparticles, while the inner-sphere of NiII is invariant for the nanoparticles with different architecture. Comparative analysis of the electrochemically generated redox transformations of the NiII complexes embedded in the nanoparticles of various architectures reveals the latter as the main factor controlling the accessibility of NiII complexes to the redox transitions which, in turn, controls the electrochemical behavior of the nanoparticles. The work also highlights an impact of the nanoparticulate architecture in catalytic activity of the NiII complexes within the different nanoparticles in oxidative C-H fluoroalkylation of caffeine. Both low leakage and high concentration of the NiII complexes at the interface of the composite nanoparticles enables fluoroalkylated caffeine to be obtained in high yields under recycling of the nanocatalyst five times at least.

17.
Dalton Trans ; 47(29): 9608-9616, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29855006

RESUMO

The efficient catalysis of oxidative alkylation and fluoroalkylation of aromatic C-H bonds is of paramount importance in the pharmaceutical and agrochemical industries, and requires the development of convenient Ag0-based nano-architectures with high catalytic activity and recyclability. We prepared Ag-doped silica nanoparticles (Ag0/+@SiO2) with a specific nano-architecture, where ultra-small sized silver cores are immersed in silica spheres, 40 nm in size. The nano-architecture provides an efficient electrochemical oxidation of Ag+@SiO2 without any external oxidant. In turn, Ag+@SiO2 5 mol% results in 100% conversion of arenes into their alkylated and fluoroalkylated derivatives in a single step at room temperature under nanoheterogeneous electrochemical conditions. Negligible oxidative leaching of silver from Ag0/+@SiO2 is recorded during the catalytic coupling of arenes with acetic, difluoroacetic and trifluoroacetic acids, which enables the good recyclability of the catalytic function of the Ag0/+@SiO2 nanostructure. The catalyst can be easily separated from the reaction mixture and reused a minimum of five times upon electrochemical regeneration. The use of the developed Ag0@SiO2 nano-architecture as a heterogeneous catalyst facilitates aromatic C-H bond substitution by alkyl and fluoroalkyl groups, which are privileged structural motifs in pharmaceuticals and agrochemicals.

18.
Dalton Trans ; 45(30): 11976-82, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27385649

RESUMO

We have developed Ni(III)-doped silica nanoparticles ([(bpy)xNi(III)]@SiO2) as a recyclable, low-leaching, and efficient oxidative functionalization nanocatalyst for aromatic C-H bonds. The catalyst is obtained by doping the complex [(bpy)3Ni(II)] on silica nanoparticles along with its subsequent electrooxidation to [(bpy)xNi(III)] without an additional oxidant. The coupling reaction of arenes with perfluoroheptanoic acid occurs with 100% conversion of reactants in a single step at room temperature under nanoheterogeneous conditions. The catalyst content is only 1% with respect to the substrates under electrochemical regeneration conditions. The catalyst can be easily separated from the reaction mixture and reused a minimum of five times. The results emphasize immobilization on the silica support and the electrochemical regeneration of Ni(III) complexes as a facile route for developing an efficient nanocatalyst for oxidative functionalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...