Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(24): e202400168, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38380792

RESUMO

Processing CO2 into value-added chemicals and fuels stands as one of the most crucial tasks in addressing the global challenge of the greenhouse effect. In this study, we focused on the complex (dpp-bian)NiBr2 (where dpp-bian is di-isopropylphenyl bis-iminoacenaphthene) as a precatalyst for the electrochemical reduction of CO2 into CH4 as the sole product. Cyclic voltammetry results indicate that the realization of a catalytically effective pattern requires the three-electron reduction of (dpp-bian)NiBr2. The chemically reduced complexes [K(THF)6]+[(dpp-bian)Ni(COD)]- and [K(THF)6]+[(dpp-bian)2Ni]- were synthesized and structurally characterized. Analyzing the data from the electron paramagnetic resonance study of the complexes in solutions, along with quantum-chemical calculations, reveals that the spin density is predominantly localized at their metal centers. The superposition of trajectory maps of the electron density gradient vector field ∇ ρ r ${\nabla \rho \left({\bf r}\right)}$ and the electrostatic force density field F e s r ${{{\bf F}}_{{\rm e}{\rm s}}\left({\bf r}\right)}$ per electron, as well as the atomic charges, discloses that, within the first coordination sphere, the interatomic charge transfer occurs from the metal atom to the ligand atoms and that the complex anions can thus be formally described by the general formulae (dpp-bian)2-Ni+(COD) and (dpp-bian)2 -Ni+. It was also shown that the reduced nickel complexes can be oxidized by formic acid; resulting from this reaction, the two-electron and two-proton addition product dpp-bian-2H is formed.

2.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240012

RESUMO

Redox properties of monoiminoacenaphthenes (MIANs) were studied using various electrochemical techniques. The potential values obtained were used for calculating the electrochemical gap value and corresponding frontier orbital difference energy. The first-peak-potential reduction of the MIANs was performed. As a result of controlled potential electrolysis, two-electron one-proton addition products were obtained. Additionally, the MIANs were exposed to one-electron chemical reduction by sodium and NaBH4. Structures of three new sodium complexes, three products of electrochemical reduction, and one product of the reduction by NaBH4 were studied using single-crystal X-ray diffraction. The MIANs reduced electrochemically by NaBH4 represent salts, in which the protonated MIAN skeleton acts as an anion and Bu4N+ or Na+ as a cation. In the case of sodium complexes, the anion radicals of MIANs are coordinated with sodium cations into tetranuclear complexes. The photophysical and electrochemical properties of all reduced MIAN products, as well as neutral forms, were studied both experimentally and quantum-chemically.


Assuntos
Sódio , Oxirredução , Ânions/química , Cátions/química
3.
Dalton Trans ; 52(23): 7876-7884, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37212425

RESUMO

A new bifunctional N4-ligand was obtained via the condensation reaction of acenaphthenequinone and 2-picolylamine. A peculiarity of this synthesis is the formation of a new intramolecular C-C bond during the reaction. The structure and redox properties of the ligand were studied. The anion-radical form of the ligand was prepared via the chemical reduction of the latter with metallic sodium as well as in situ via its electrochemical reduction in a solution. The sodium salt prepared was structurally characterized using single-crystal X-ray diffraction (XRD). New cobalt complexes with the ligand in neutral and anion-radical forms were synthesized and further studied. As a result, three new homo- and heteroleptic cobalt(II) complexes were obtained, in which the cobalt atom demonstrates different modes of coordination with the ligand. Cobalt(II) complex CoL2 with two monoanionic ligands was prepared by the electrochemical reduction of a related L2CoBr2 complex or by treating cobalt(II) bromide with the sodium salt. XRD was used to study the structures of all cobalt complexes prepared. Magnetic and electron paramagnetic resonance studies were performed: CoII ion states with S = 3/2 and S = 1/2 were found for the complexes. A quantum-chemical study confirmed that the spin density is mainly located at the cobalt center.

4.
Molecules ; 25(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825126

RESUMO

In order to synthesize new iron (II) complexes of 1,5-diaza-3,7-diphosphacyclooctanes with a wider variety of the substituents on ligands heteroatoms (including functionalized ones, namely, pyridyl groups) and co-ligands, it was found that these ligands with relatively small phenyl, benzyl, and pyridin-2-yl substituents on phosphorus atoms in acetonitrile formed bis-P,P-chelate cis-complexes [L2Fe(CH3CN)2]2+ (BF4)2-, whereas P-mesityl-substituted ligand formed only monoligand P,P-complex [LFe(CH3CN)4]2+ (BF4)2-. 3,7-dibenzyl-1,5-di(1'-(R)-phenylethyl)-1,5-diaza-3,7-diphosphacyclooctane reacted with hexahydrate of iron (II) tetrafluoroborate in acetone to give an unusual bis-ligand cationic complex of the composition [L2Fe(BF4)]+ BF4-, where two fluorine atoms of the tetrafluoroborate unit occupied two pseudo-equatorial positions at roughly octahedral iron ion, according to X-ray diffraction data. 1,5-diaza-3,7-diphosphacyclooctanes replaced tetrahydrofurane and one of the carbonyl ligands of cyclopentadienyldicarbonyl(tetrahydrofuran)iron (II) tetrafluoroborate to form heteroligand complexes [CpFeL(CO)]+BF4-. The structural studies in the solid phase and in solutions showed that diazadiphosphacyclooctane ligands of all complexes adopted chair-boat conformations so that their nitrogen atoms were in close proximity to the central iron ion. The redox properties of the obtained complexes were performed by the cyclic voltammetry method.


Assuntos
Compostos Aza/química , Ciclo-Octanos/química , Compostos de Ferro/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Oxirredução
5.
Chem Asian J ; 14(17): 2979-2987, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31298502

RESUMO

New nickel-based complexes of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) with BF4 - counterion or halide co-ligands were synthesized in THF and MeCN. The nickel(I) complexes were obtained by using two approaches: 1) electrochemical reduction of the corresponding nickel(II) precursors; and 2) a chemical comproportionation reaction. The structural features and redox properties of these complexes were investigated by using single-crystal X-ray diffraction (XRD), cyclic voltammetry (CV), and electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. The influence of temperature and solvent on the structure of the nickel(I) complexes was studied in detail, and an uncommon reversible solvent-induced monomer/dimer transformation was observed. In the case of the fluoride complex, the unpaired electron was found to be localized on the dpp-bian ligand, whereas all of the other nickel complexes contained neutral dpp-bian moieties.

6.
Chemistry ; 25(15): 3858-3866, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30570195

RESUMO

The electrochemical characteristics of 2-mono(2,6-diisopropylphenylimino)acenaphthene-1-one (dpp-mian) have been investigated. One-electron reduction of dpp-mian involves the iminoketone fragment, which is revealed by the EPR spectrum obtained after the electrolysis of the dpp-mian solution in tetrahydrofuran (THF). The reduction of dpp-mian with one equivalent of metallic potassium leads to a similar EPR spectrum. The sodium complex [(dpp-mian)Na(dme)]2 (1) produces an EPR signal with hyperfine coupling on the nitrogen atom of the iminoketone fragment of the dpp-mian ligand. Dpp-mian can also be reduced in a one-electron process by SnCl2 ×(dioxane). In this case, complex (dpp-mian)2 SnCl2 (2) is formed, with the tin atom displaying an oxidation state of +4. Tin(II) chloride dihydrate, SnCl2 ×2(H2 O), also reduces dpp-mian, but the two ligands bound to tin in the product form a new carbon-carbon bond between the ketone moieties of the dpp-mian monoanions to form complex (bis-dpp-mian)HSnCl3 (3). Metallic tin reduces dpp-mian to form the (bis-dpp-mian)2 Sn (4) species. Compounds 1-4 were characterized by X-ray diffraction.

7.
RSC Adv ; 9(39): 22627-22635, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35519456

RESUMO

The present work introduces a facile synthetic route for efficient doping of [NiII(bpy) x ] into silica nanoparticles with various sizes and architectures. Variation of the latter results in different concentrations of the NiII complexes at the interface of the composite nanoparticles. The UV-Vis analysis of the nanoparticles reveals changes in the inner-sphere environment of the NiII complexes when embedded into the nanoparticles, while the inner-sphere of NiII is invariant for the nanoparticles with different architecture. Comparative analysis of the electrochemically generated redox transformations of the NiII complexes embedded in the nanoparticles of various architectures reveals the latter as the main factor controlling the accessibility of NiII complexes to the redox transitions which, in turn, controls the electrochemical behavior of the nanoparticles. The work also highlights an impact of the nanoparticulate architecture in catalytic activity of the NiII complexes within the different nanoparticles in oxidative C-H fluoroalkylation of caffeine. Both low leakage and high concentration of the NiII complexes at the interface of the composite nanoparticles enables fluoroalkylated caffeine to be obtained in high yields under recycling of the nanocatalyst five times at least.

8.
Dalton Trans ; 45(30): 11976-82, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27385649

RESUMO

We have developed Ni(III)-doped silica nanoparticles ([(bpy)xNi(III)]@SiO2) as a recyclable, low-leaching, and efficient oxidative functionalization nanocatalyst for aromatic C-H bonds. The catalyst is obtained by doping the complex [(bpy)3Ni(II)] on silica nanoparticles along with its subsequent electrooxidation to [(bpy)xNi(III)] without an additional oxidant. The coupling reaction of arenes with perfluoroheptanoic acid occurs with 100% conversion of reactants in a single step at room temperature under nanoheterogeneous conditions. The catalyst content is only 1% with respect to the substrates under electrochemical regeneration conditions. The catalyst can be easily separated from the reaction mixture and reused a minimum of five times. The results emphasize immobilization on the silica support and the electrochemical regeneration of Ni(III) complexes as a facile route for developing an efficient nanocatalyst for oxidative functionalization.

9.
Chemistry ; 20(11): 3169-82, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24523072

RESUMO

Eight-membered cyclic functional bisphosphines, namely 1,5-di-aryl-3,7-di(2-pyridyl)-1,5-diaza-3,7-diphosphacyclooctanes (aryl=2-pyridyl, m-tolyl, p-tolyl, diphenylmethyl, benzyl, (R)-(+)-(α-methyl)benzyl), with 2-pyridyl substituents on the phosphorus atoms have been synthesized by condensation of 2-pyridylphosphine, formaldehyde, and the corresponding primary amine. The structures of some of these bisphosphines have been investigated by X-ray crystallography. The bisphosphines readily form neutral P,P-chelate complexes [(κ(2)-P,P-L)MCl2], cationic bis-P,P-chelate complexes [(κ(2)-P,P-L)2 M](2+), or a five-coordinate complex [(κ(2)-P,P-L)2 NiBr]Br. The electrochemical behavior of two of the nickel complexes, and their catalytic activities in electrochemical hydrogen evolution and hydrogen oxidation, including the fuel-cell test, have been studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...