Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 29(Pt 6): 1465-1479, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345755

RESUMO

A Hanbury Brown and Twiss interferometry experiment based on second-order correlations was performed at the PAL-XFEL facility. The statistical properties of the X-ray radiation were studied within this experiment. Measurements were performed at the NCI beamline at 10 keV photon energy under various operation conditions: self-amplified spontaneous emission (SASE), SASE with a monochromator, and self-seeding regimes at 120 pC, 180 pC and 200 pC electron bunch charge. Statistical analysis showed short average pulse duration from 6 fs to 9 fs depending on the operational conditions. A high spatial degree of coherence of about 70-80% was determined in the spatial domain for the SASE beams with the monochromator and self-seeding regime of operation. The obtained values describe the statistical properties of the beams generated at the PAL-XFEL facility.

3.
Struct Dyn ; 8(4): 044305, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34476285

RESUMO

Second-order intensity interferometry was employed to study the spatial and temporal properties of the European X-ray Free-Electron Laser (EuXFEL). Measurements were performed at the soft x-ray Self-Amplified Spontaneous Emission (SASE3) undulator beamline at a photon energy of 1.2 keV in the Self-Amplified Spontaneous Emission (SASE) mode. Two high-power regimes of the SASE3 undulator settings, i.e., linear and quadratic undulator tapering at saturation, were studied in detail and compared with the linear gain regime. The statistical analysis showed an exceptionally high degree of spatial coherence up to 90% for the linear undulator tapering. Analysis of the measured data in spectral and spatial domains provided an average pulse duration of about 10 fs in our measurements. The obtained results will be valuable for the experiments requiring and exploiting short pulse duration and utilizing high coherence properties of the EuXFEL.

4.
Nanoscale ; 13(25): 11299-11300, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34156046

RESUMO

Correction for 'Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging' by Jerome Carnis et al., Nanoscale, 2021, DOI: 10.1039/D1NR01806J.

5.
Nanoscale ; 13(23): 10425-10435, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34028473

RESUMO

Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report the detailed structural characterization of a faceted mesocrystal grain self-assembled from 60 nm sized gold nanocubes. Using coherent X-ray diffraction imaging, we determined the structure of the mesocrystal with the resolution sufficient to resolve each gold nanoparticle. The reconstructed electron density of the gold mesocrystal reveals its intrinsic structural heterogeneity, including local deviations of lattice parameters, and the presence of internal defects. The strain distribution shows that the average superlattice obtained by angular X-ray cross-correlation analysis and the real, "multidomain" structure of a mesocrystal are very close to each other, with a deviation less than 10%. These results will provide an important impact to understanding the fundamental principles of structuring and self-assembly including ensuing properties of mesocrystals.

6.
IUCrJ ; 7(Pt 6): 1102-1113, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209321

RESUMO

An improved analysis for single-particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from half of the detector and a small fraction of single hits. The general SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus-structure determination step. The presented processing pipeline allowed us to determine the 3D structure of bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits.

7.
Adv Mater ; 32(36): e2002254, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32725688

RESUMO

The assembly of colloidal semiconductive nanocrystals into highly ordered superlattices predicts novel structure-related properties by design. However, those structure-property relationships, such as charge transport depending on the structure or even directions of the superlattice, have remained unrevealed so far. Here, electric transport measurements and X-ray nanodiffraction are performed on self-assembled lead sulfide nanocrystal superlattices to investigate direction-dependent charge carrier transport in microscopic domains of these materials. By angular X-ray cross-correlation analysis, the structure and orientation of individual superlattices is determined, which are directly correlated with the electronic properties of the same microdomains. By that, strong evidence for the effect of superlattice crystallinity on the electric conductivity is found. Further, anisotropic charge transport in highly ordered monocrystalline domains is revealed, which is attributed to the dominant effect of shortest interparticle distance. This implies that transport anisotropy should be a general feature of weakly coupled nanocrystal superlattices.

8.
J Synchrotron Radiat ; 25(Pt 5): 1335-1345, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179171

RESUMO

The (spectral) brightness for partially transverse coherent sources such as synchrotron radiation and free-electron laser sources can be defined as the maximum of the Wigner distribution. Then, the brightness includes information on both coherence and wavefront characteristics of the radiation field. For undulator sources, it is customary to approximate the single-electron electric field at resonance with a Gaussian beam, leading to great simplifications. Attempts to account for the modified spatial and angular profile of the undulator radiation in the presence of detuning due to energy spread, currently build on the simplified brightness expression derived under the assumption of Gaussian beams. The influence of energy spread on undulator radiation properties is becoming important in view of diffraction-limited rings with ultralow emittance coming on-line. Here the effects of energy spread on the brightness of undulator radiation at resonance are discussed, as well as relevant relations with coherence properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...