Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurochem ; 167(4): 556-570, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37837197

RESUMO

Neovascularization is a critical process in tumor progression and malignant transformation associated with neurofibromatosis type 1 (NF1). Indeed, fibroblasts are known to play a key role in the tumoral microenvironment modification by producing an abundant collagenous matrix, but their contribution in paracrine communication pathways is poorly understood. Here, we hypothesized that NF1 heterozygosis in human dermal fibroblasts could promote angiogenesis through exosomes secretion. The purposes of this study are to identify the NF1 fibroblast-derived exosome protein contents and to determine their proangiogenic activity. Angiogenic proteome measurement confirmed the overexpression of VEGF and other proteins involved in vascularization. Tube formation of microvascular endothelial cells was also enhanced in presence of exosomes derived from NF1 skin fibroblasts. NF1 tissue-engineered skin (NF1-TES) generation showed a significantly denser microvessels networks compared to healthy controls. The reduction of exosomes production with an inhibitor treatment demonstrated a drastic decrease in blood vessel formation within the dermis. Our results suggest that NF1 haploinsufficiency alters the dermal fibroblast function and creates a pro-angiogenic signal via exosomes, which increases the capillary formation. This study highlights the potential of targeting exosome secretion and angiogenesis for therapeutic interventions in NF1.


Assuntos
Exossomos , Neurofibromatose 1 , Humanos , Células Endoteliais/metabolismo , Neurofibromatose 1/metabolismo , Neovascularização Patológica , Fibroblastos , Pele , Exossomos/metabolismo , Microambiente Tumoral
2.
Biomaterials ; 280: 121269, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34847434

RESUMO

One of the major challenges in the development of a larger and longer nerve conduit for peripheral nerve repair is the limitation in oxygen and nutrient diffusion within the tissue after transplantation preventing Schwann cell and axonal migration. This restriction is due to the slow neovascularization process of the graft starting from both nerve endings. To overcome this limitation, we propose the design of a living tissue-engineered nerve conduit made of an internal tube with a three-dimensional structure supporting axonal migration, which is inserted inside a hollow external tube that plays the role of an epineurium and is strong enough to be stitched to the severed nerve stumps. The internal tube is made of a rolled living fibroblast sheet and can be seeded with endothelial cells to promote the formation of a network containing capillary-like structures which allow rapid inosculation with the host nerve microvasculature after grafting. Human nerve conduits were grafted in immunodeficient rats to bridge a 15 mm sciatic nerve gap. Human capillaries within the pre-vascularized nerve conduit successfully connected to the host circulation 2 weeks after grafting. Twenty-two weeks after surgery, rats transplanted with the nerve conduits had a similar motor function recovery compared to the autograft group. By promoting rapid vascularization of the internal nerve tube from both ends of the nerve stumps, this endothelialized nerve conduit model displays a favorable environment to enhance axonal migration in both larger caliber and longer nerve grafts.


Assuntos
Traumatismos dos Nervos Periféricos , Animais , Células Endoteliais , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Ratos , Células de Schwann , Nervo Isquiático/fisiologia , Engenharia Tecidual/métodos
3.
Biotechnol J ; 16(6): e2000250, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33689228

RESUMO

Neurofibromas are the most characteristic feature of neurofibromatosis type 1 (NF1), a multisystemic disorder caused by aberrations in the neurofibromin gene (NF1). Despite significant progress over the last several years in understanding this disease, a suitable in vitro model to better mimic neurofibroma formation and growth has yet to be described. There is therefore a need to establish an in vitro, three dimensional model that allows the incorporation of multicellular lineages and the modulation of the cellular microenvironment-known to be important for cellular crosstalk and distribution of soluble factors-to study neurofibroma biology and morphogenesis. A self-assembly approach was used to generate tissue-engineered skins (TES) in which patient-derived spheroids made of NF1-associated Schwann cells and fibroblasts were seeded. We describe the first in vitro three dimensional neurofibroma model-directly derived from NF1 patients presenting with histopathological features-having an ECM protein expression profile quite similar to that of a native tumor. We observed efficient incorporation, proliferation, and migration of spheroids within NF1-TES over time. This biotechnological approach could provide a unique tool for precision medicine targeting NF1 and for assessing the tumorigenic properties of each NF1 gene mutation linked to tumor formation.


Assuntos
Neurofibroma , Neurofibromatose 1 , Humanos , Mutação , Neurofibroma/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Células de Schwann , Microambiente Tumoral/genética
4.
Analyst ; 145(10): 3678-3685, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32307493

RESUMO

One of the great challenges in identifying effective therapy in many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is the lack of reliable biomarkers. In this study, we applied infrared imaging microspectroscopy, a valuable technique to investigate biomolecule fingerprints and secondary structure of proteins within biological tissue. We hypothesized that, since skin and CNS have the same embryonic origin, spectral differences associated with ALS-specific pathological events will be readily detectable through skin testing using this technique. Cells from healthy individuals and ALS patients were isolated from skin biopsies in order to generate tissue-engineered in vitro skin (TES). Infrared spectra of the generated TES were recorded using a focal-plane-array Fourier transform infrared (FPA-FTIR) spectrometer, and hierarchical cluster analysis of the spectral data was performed in order to establish clear differences between the tested TES specimens. Interestingly, our analyses showed that it was readily possible to discriminate ALS- and control-TES solely based on differences in associated FTIR spectra, mainly located between 1149 and 1473 cm-1, attributed to disruption of phospholipid cell membranes, extracellular matrix remodeling or cholesterol accumulation. Spectral differences within the TES samples may therefore be associated with disease state, paving the way for the identification of biomarkers in ALS.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/metabolismo , Pele/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Estudos de Casos e Controles , Humanos
7.
Acta Neuropathol Commun ; 3: 5, 2015 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-25637145

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult-onset disease characterized by the selective degeneration of motor neurons in the brain and spinal cord progressively leading to paralysis and death. Current diagnosis of ALS is based on clinical assessment of related symptoms. The clinical manifestations observed in ALS appear relatively late in the disease course after degeneration of a significant number of motor neurons. As a result, the identification and development of disease-modifying therapies is difficult. Therefore, novel strategies for early diagnosis of neurodegeneration, to monitor disease progression and to assess response to existing and future treatments are urgently needed. Factually, many neurological disorders, including ALS, are accompanied by skin changes that often precede the onset of neurological symptoms. Aiming to generate an innovative human-based model to facilitate the identification of predictive biomarkers associated with the disease, we developed a unique ALS tissue-engineered skin model (ALS-TES) derived from patient's own cells. The ALS-TES presents a number of striking features including altered epidermal differentiation, abnormal dermo-epidermal junction, delamination, keratinocyte infiltration, collagen disorganization and cytoplasmic TDP-43 inclusions. Remarkably, these abnormal skin defects, uniquely seen in the ALS-derived skins, were detected in pre-symtomatic C9orf72-linked ALS patients carrying the GGGGCC DNA repeat expansion. Consequently, our ALS skin model could represent a renewable source of human tissue, quickly and easily accessible to better understand the physiophatological mechanisms underlying this disease, to facilitate the identification of disease-specific biomarkers, and to develop innovative tools for early diagnosis and disease monitoring.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/metabolismo , Pele/metabolismo , Pele/patologia , Engenharia Tecidual/métodos , Adulto , Esclerose Lateral Amiotrófica/genética , Biomarcadores/metabolismo , Expansão das Repetições de DNA , Progressão da Doença , Diagnóstico Precoce , Matriz Extracelular/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuropatologia/métodos
8.
Exp Neurol ; 254: 168-79, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24440805

RESUMO

Previous work has shown that infusion of skin-derived precursors pre-differentiated into Schwann cells (SKP-SCs) can remyelinate injured and regenerating axons, and improve indices of axonal regeneration and electrophysiological parameters in rodents. We hypothesized that SKP-SC therapy would improve behavioral outcomes following nerve injury repair and tested this in a pre-clinical trial in 90 rats. A model of sciatic nerve injury and acellular graft repair was used to compare injected SKP-SCs to nerve-derived Schwann cells or media, and each was compared to the gold standard nerve isograft repair. In a second experiment, rats underwent right tibial nerve transection and received either acute or delayed direct nerve repair, with injections of either 1) SKP-SCs distal to the repair site, 2) carrier medium alone, or 3) dead SKP-SCs, and were followed for 4, 8 or 17weeks. For delayed repairs, both transected nerve ends were capped and repaired 11weeks later, along with injections of cells or media as above, and followed for 9 additional weeks (total of 20weeks). Rats were serially tested for skilled locomotion and a slip ratio was calculated for the horizontal ladder-rung and tapered beam tasks. Immediately after nerve injury and with chronic denervation, slip ratios were dramatically elevated. In the GRAFT repair study, the SKP-SC treated rats showed statistically significant improvement in ladder rung as compared to all other groups, and exhibited the greatest similarity to the sham controls on the tapered beam by study termination. In the ACUTE repair arm, the SKP-SC group showed marked improvement in ladder rung slip ratio as early as 5weeks after surgery, which was sustained for the duration of the experiment. Groups that received media and dead SKP-SCs improved with significantly slower progression. In the DELAYED repair arm, the SKP-SC group became significantly better than other groups 7weeks after the repair, while the media and the dead SKP-SCs showed no significant improvement in slip ratios. On histomorphometrical analysis, SKP-SC group showed significantly increased mean axon counts while the percent myelin debris was significantly lower at both 4 and 8weeks, suggesting that a less inhibitory micro-environment may have contributed to accelerated axonal regeneration. For delayed repair, mean axon counts were significantly higher in the SKP-SC group. Compound action potential amplitudes and muscle weights were also improved by cell therapy. In conclusion, SKP-SC therapy improves behavioral recovery after acute, chronic and nerve graft repair beyond the current standard of microsurgical nerve repair.


Assuntos
Células-Tronco Adultas/transplante , Derme/citologia , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Células de Schwann/transplante , Transplante de Células-Tronco/métodos , Doença Aguda , Células-Tronco Adultas/citologia , Animais , Animais Recém-Nascidos , Derme/inervação , Feminino , Masculino , Atividade Motora , Músculo Esquelético/inervação , Traumatismos dos Nervos Periféricos/patologia , Cultura Primária de Células , Ratos , Ratos Endogâmicos Lew , Células de Schwann/citologia , Nervo Isquiático/citologia , Fatores de Tempo
9.
Curr Neurol Neurosci Rep ; 13(1): 322, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23250767

RESUMO

Patients with peripheral nerve injuries face unpredictable and often suboptimal functional outcome, even following standard microsurgical nerve repair. The challenge of improving such outcomes following nerve surgical procedures has interested many research teams, in both clinical and fundamental fields. Some innovative treatments are presently being applied to a widening range of patients, whereas others will require further development before translation to human subjects. This article presents several recent advances in emerging therapies at various stages of clinical application. Nerve transfers have been successfully used in clinical settings, but new indications are being described, enlarging the range of patients who might benefit from them. Brief direct nerve electrical stimulation has been shown to improve nerve regeneration and outcome in animal models and in a small cohort of patients. Further clinical trials are warranted to prove the efficacy of this exciting and easily applicable approach. Animal studies also suggest a tremendous potential for stem and precursor cell therapy. Further studies will lead to a better understanding of their mechanisms of action in nerve repair and potential applications for human patients.


Assuntos
Terapia por Estimulação Elétrica/métodos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Transplante de Células-Tronco/métodos , Humanos , Procedimentos Neurocirúrgicos , Células de Schwann/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...