Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 125(29): 8827-37, 2003 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-12862478

RESUMO

We report the highly convergent synthesis and solid-state characterization of six crystalline "molecular compasses" consisting of a central phenylene rotor with polar substituents, or compass needle, and two trityl groups axially connected by acetylene linkages to the 1,4-positions. Compounds with fluoro-, cyano-, nitro-, amino-, diamino-, and nitroamino substituents are expected to emulate the parent compound which was shown to form crystals where the central phenylene can rotate about its 1,4-axis with rate constants in the 10(3) -10(6) s(-)(1) dynamic ranges near ambient temperature, depending on crystal morphology. With data from single-crystal X-ray diffraction analysis, solid-state CPMAS (13)C NMR, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), it is shown that a relatively small structural perturbation by a single polar group (F, CN, NO(2), NH(2)) results in isomorphous structures with analogous properties. In analogy to the parent compound, crystals grown from benzene formed clathrate structures in the space group Ponemacr; with one molecular compass and two benzene molecules per unit cell. Solvent-free crystals with the same space group obtained by a first-order phase transition between 60 and 130 degrees C were shown to be spectroscopically identical to those obtained by slow solvent evaporation from a mixture of CH(2)Cl(2) and hexanes. A qualitative analysis of the positionally disordered phenylene groups in terms of the expected solid-state rotational dynamics suggests a nonsymmetric, 2-fold rotational potential, or a process involving full 360 degrees turns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...