Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 382: 110590, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268200

RESUMO

Nanotechnology is one of the most appealing area for developing new applications in biotechnology and medicine. For decades, nanoparticles have been extensively studied for a variety of biomedical applications. Silver has evolved into a potent antibacterial agent that can be used in a variety of nanostructured materials of various shapes and sizes. Silver nanoparticles (AgNP) based antimicrobial compounds are employed in a wide range of applications, including medicinal uses, surface treatment and coatings, the chemical and food industries, and agricultural productivity. When designing formulations for specific applications, the size, shape, and surface area of AgNPs are all crucial structural aspects to consider. Different methods for producing AgNPs with varying sizes and forms that are less harmful have been devised. The anticancer, anti-inflammatory, antibacterial, antiviral, and anti-angiogenic properties of AgNPs have been addressed in this review, as well as their generation and processes. Herein, we have reviewed the advances in therapeutic applications of AgNPs, as well as their limitations and barriers for future applications.


Assuntos
Nanopartículas Metálicas , Prata , Prata/efeitos adversos , Prata/uso terapêutico , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Animais , Humanos , Antineoplásicos/uso terapêutico , Adjuvantes Imunológicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Técnicas Biossensoriais , Hipoglicemiantes/uso terapêutico
2.
J Drug Deliv Sci Technol ; 86: 104663, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37362903

RESUMO

Deficiency of selenium (Se) has been described in a significant number of COVID-19 patients having a higher incidence of mortality, which makes it a pertinent issue to be addressed clinically for effective management of the COVID-19 pandemic. Se nanoparticles (SeNPs) provide a unique option for managing the havoc caused by the COVID-19 pandemic. SeNPs possess promising anti-inflammatory and anti-fibrotic effects by virtue of their nuclear factor kappa-light-chain-stimulator of activated B cells (NFκB), mitogen-activated protein kinase (MAPKs), and transforming growth factor-beta (TGF-ß) modulatory activity. In addition, SeNPs possess remarkable immunomodulatory effects, making them a suitable option for supplementation with a much lower risk of toxicity compared to their elemental counterpart. Further, SeNPs have been shown to curtail viral and microbial infections, thus, making it a novel means to halt viral growth. In addition, it can be administered in the form of aerosol spray, direct injection, or infused thin-film transdermal patches to reduce the spread of this highly contagious viral infection. Moreover, a considerable decrease in the expression of selenoprotein along with enhanced expression of IL-6 in COVID-19 suggests a potential association among selenoprotein expression and COVID-19. In this review, we highlight the unique antimicrobial and antiviral properties of SeNPs and the immunomodulatory potential of selenoproteins. We provide the rationale behind their potentially interesting properties and further exploration in the context of microbial and viral infections. Further, the importance of selenoproteins and their role in maintaining a successful immune response along with their association to Se status is summarized.

3.
J Cell Biochem ; 123(10): 1674-1698, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36128934

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas technology possesses revolutionary potential to positively affect various domains of drug discovery. It has initiated a rise in the area of genetic engineering and its advantages range from classical science to translational medicine. These genome editing systems have given a new dimension to our capabilities to alter, detect and annotate specified gene sequences. Moreover, the ease, robustness and adaptability of the CRISPR/Cas9 technology have led to its extensive utilization in research areas in such a short period of time. The applications include the development of model cell lines, understanding disease mechanisms, discovering disease targets, developing transgenic animals and plants, and transcriptional modulation. Further, the technology is rapidly growing; hence, an overlook of progressive success is crucial. This review presents the current status of the CRISPR-Cas technology in a tailor-made format from its discovery to several advancements for drug discovery alongwith future trends associated with possibilities and hurdles including ethical concerns.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Descoberta de Drogas , Tecnologia
4.
Life Sci ; 294: 120375, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123997

RESUMO

Gene therapy is the product of man's quest to eliminate diseases. Gene therapy has three facets namely, gene silencing using siRNA, shRNA and miRNA, gene replacement where the desired gene in the form of plasmids and viral vectors, are directly administered and finally gene editing based therapy where mutations are modified using specific nucleases such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulatory interspaced short tandem repeats (CRISPR)/CRISPR-associated protein (Cas)-associated nucleases. Transfer of gene is either through transformation where under specific conditions the gene is directly taken up by the bacterial cells, transduction where a bacteriophage is used to transfer the genetic material and lastly transfection that involves forceful delivery of gene using either viral or non-viral vectors. The non-viral transfection methods are subdivided into physical, chemical and biological. The physical methods include electroporation, biolistic, microinjection, laser, elevated temperature, ultrasound and hydrodynamic gene transfer. The chemical methods utilize calcium- phosphate, DAE-dextran, liposomes and nanoparticles for transfection. The biological methods are increasingly using viruses for gene transfer, these viruses could either integrate within the genome of the host cell conferring a stable gene expression, whereas few other non-integrating viruses are episomal and their expression is diluted proportional to the cell division. So far, gene therapy has been wielded in a plethora of diseases. However, coherent and innocuous delivery of genes is among the major hurdles in the use of this promising therapy. Hence this review aims to highlight the current options available for gene transfer along with the advantages and limitations of every method.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Transferência de Genes , Doenças Genéticas Inatas/terapia , Terapia Genética , Vetores Genéticos/uso terapêutico , Doenças Genéticas Inatas/genética , Humanos
5.
Carbohydr Polym ; 281: 118923, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074100

RESUMO

Polysaccharides are biopolymers distinguished by their complex secondary structures executing various roles in microorganisms, plants, and animals. They are made up of long monomers of similar type or as a combination of other monomeric chains. Polysaccharides are considered superior as compared to other polymers due to their diversity in charge and size, biodegradability, abundance, bio-compatibility, and less toxicity. These natural polymers are widely used in designing of nanoparticles (NPs) which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. The side chain reactive groups of polysaccharides are advantageous for functionalization with nanoparticle-based conjugates or therapeutic agents such as small molecules, proteins, peptides and nucleic acids. Polysaccharide NPs show excellent pharmacokinetic and drug delivery properties, facilitate improved oral absorption, control the release of drugs, increases in vivo retention capability, targeted delivery, and exert synergistic effects. This review updates the usage of polysaccharides based NPs particularly cellulose, chitosan, hyaluronic acid, alginate, dextran, starch, cyclodextrins, pullulan, and their combinations with promising applications in diabetes, organ fibrosis and arthritis.


Assuntos
Artrite Reumatoide , Diabetes Mellitus , Nanopartículas , Animais , Artrite Reumatoide/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Fibrose , Nanopartículas/química , Polissacarídeos/química , Polissacarídeos/uso terapêutico , Amido
6.
Sens Int ; 2: 100101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34766057

RESUMO

COVID-19 is a highly contagious and widespread disease that has strained the global healthcare system to the hilt. Silver nanoparticles (AgNPs) are well known for their potent antimicrobial, antiviral, immunomodulatory and biosensing properties. AgNPs have been found to be potential antiviral agent that act against many deadly viruses and is presumed to be effective against COVID-19. AgNPs can generate free radicals and reactive oxygen species (ROS) leading to apoptosis mediated cell death thereby inhibiting viral infection. The shape and size of AgNPs play an important role in its biomedical applications as alterations may result in variable biological interaction and activity. Herein, we propose that AgNPs can be utilized for effective management of the ongoing COVID-19 pandemic by highlighting the current status of AgNPs in the fight against COVID-19.

7.
Med Hypotheses ; 152: 110612, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34098463

RESUMO

Coronavirus pandemic has emerged as an extraordinary healthcare crisis in modern times. The SARS-CoV-2 novel coronavirus has high transmission rate, is more aggressive and virulent in comparison to previously known coronaviruses. It primarily attacks the respiratory system by inducing cytokine storm that causes systemic inflammation and pulmonary fibrosis. Decorin is a pluripotent molecule belonging to a leucine rich proteoglycan group that exerts critical role in extracellular matrix (ECM) assembly and regulates cell growth, adhesion, proliferation, inflammation, and fibrogenesis. Interestingly, decorin has potent anti-inflammatory, cytokine inhibitory, and anti-fibrillogenesis effects which make it a potential drug candidate against the COVID-19 related complications especially in the context of lung fibrosis. Herein, we postulate that owing to its distinctive pharmacological actions and immunomodulatory effect, decorin can be a promising preclinical therapeutic agent for the therapy of COVID-19.


Assuntos
COVID-19 , Citocinas , Decorina , Humanos , Pandemias , SARS-CoV-2
8.
Nano Today ; 38: 101142, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33815564

RESUMO

The emergency use authorization (EUA) by the US-FDA for two mRNA-based vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) has brought hope of addressing the COVID-19 pandemic which has killed more than two million people globally. Nanotechnology has played a significant role in the success of these vaccines. Nanoparticles (NPs) aid in improving stability by protecting the encapsulated mRNA from ribonucleases and facilitate delivery of intact mRNA to the target site. The overwhelming success of these two mRNA based vaccines with ~95% efficacy in phase III clinical trials can be attributed to their unique nanocarrier, the "lipid nanoparticles" (LNPs). LNPs are unique compared with bilayered liposomes and provide improved stability of the cargo, possess rigid morphology, and aid in better cellular penetration. This EUA is a major milestone and showcases the immense potential of nanotechnology for vaccine delivery and for fighting against future pandemics. Currently, these two vaccines are aiding in the alleviation of the COVID-19 health crisis and demonstrate the potential utility of nanomedicine for tackling health problems at the global level.

9.
Med Hypotheses ; 149: 110534, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33640714

RESUMO

Bilirubin has been proven to possess significant anti-inflammatory, antioxidant and antiviral activities. Recently, it has been postulated as a metabolic hormone. Further, moderately higher levels of bilirubin are positively associated with reduced risk of cardiovascular diseases, diabetes, metabolic syndrome and obesity. However, due to poor solubility the therapeutic delivery of bilirubin remains a challenge. Nanotechnology offers unique advantages which may be exploited for improved delivery of bilirubin to the target organ with reduced risk of systemic toxicity. Herein, we postulate the use of intravenous administration or inhalational delivery of bilirubin nanomedicine (BNM) to combat systemic dysfunctions associated with COVID-19, owing to the remarkable preclinical efficacy and optimistic results of various clinical studies of bilirubin in non-communicable disorders. BNM may be used to harness the proven preclinical pharmacological efficacy of bilirubin against COVID-19 related systemic complications.


Assuntos
Bilirrubina/uso terapêutico , COVID-19/terapia , Nanomedicina/métodos , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Antivirais/uso terapêutico , Biliverdina/uso terapêutico , Síndrome da Liberação de Citocina , Humanos , Inflamação , Sistema de Sinalização das MAP Quinases , Modelos Teóricos , Subunidade p50 de NF-kappa B/metabolismo , Risco , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA