Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38541562

RESUMO

In the pursuit of creating more sustainable and resilient structures, the exploration of construction materials and strengthening methodologies is imperative. Traditional methods of relying on steel for strengthening proved to be uneconomical and unsustainable, prompting the investigation of innovative composites. Fiber-reinforced polymers (FRPs), known for their lightweight and high-strength properties, gained prominence among structural engineers in the 1980s. This period saw the development of novel approaches, such as near-surface mounted and externally bonded reinforcement, for strengthening of concrete structures using FRPs. In recent decades, additional methods, including surface curvilinearization and external prestressing, have been discovered, demonstrating significant additional benefits. While these techniques have shown the enhanced performance, their full potential remains untapped. This article presents a comprehensive review of current approaches employed in the fortification of reinforced cement concrete structures using FRPs. It concludes by identifying key areas that warrant in-depth research to establish a sustainable methodology for structural strengthening, positioning FRPs as an effective replacement for conventional retrofitting materials. This review aims to contribute to the ongoing discourse on modern structural strengthening strategies, highlight the properties of FRPs, and propose avenues for future research in this dynamic field.

2.
Heliyon ; 10(4): e26056, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404768

RESUMO

Fiber reinforced concrete (FRC) is attracting many researchers' attention due to its excellent mechanical and fracture properties. However, its widespread implementation is hampered by the issues related to the dispersion and orientation of its fibers. According to the fracture mechanics, the reinforcement would provide maximum bridging when placed perpendicular to the crack propagation. This study is focused on the magnetic-based orientation of synthetic fibers which are mostly used in strain hardening FRC also termed as Engineered Cementitious Composites (ECC). Initially, the PVA fibers were coated with waste iron particles using a hydrothermal synthesis procedure. This was done to make synthetic fibers magnetically responsive by the formation of a physical bond between iron and PVA fibers. A solenoid was used to provide a high-intensity magnetic flux to orient these fibers in the direction of magnetic lines. Three different ECC mixes were prepared and cast in wooden molds. The molds were then placed one by one into the magnetic field for the orientation of the fibers. The fibers were successfully aligned perpendicular to the flexure cracks in only flexure dominant regions with the aid of a magnetic field. The orientation of fibers was verified with the help of microscopic images of the tortured surfaces. As a result of well aligned fibers dispersed in the ECC mix, the flexural strength was increased by 21%.

3.
Materials (Basel) ; 15(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36233956

RESUMO

A study was conducted to check the efficacy of microbial pathways for calcite precipitation to heal pre-existing cracks in mortar. In this experiment, realistic cracks of varying widths were induced on a mortar sample. Different repair methods were applied to a total of 22 mortar samples. Twelve cracked mortar samples with average crack widths ranging from 0.29 to 1.08 mm were subjected to biodeposition treatment using calcium lactate as a food source. The remaining ten samples were split into two groups: five cracked mortar samples were exclusively exposed to the bacterial solution, while the remaining five samples were immersed in distilled water. Digital image processing was used to extract the crack characteristics before and after the repair application. During several repair cycles, image processing was used to track healing. Further, these repaired mortar samples underwent examination for water permeability, ultra-sonic examination, and examination for recovered compressive strength. A forensic examination of the healing product in terms of morphology and elemental composition was conducted using RAMAN, XRD, SEM-EDS, and TGA. The water permeability of the repaired mortar sample using biodeposition with Ca-lactate was dramatically reduced, but samples treated with bacterial solution and distilled water did not exhibit any significant reduction. Complete crack healing was observed when using Ca-lactate as a food source for microbial repair. The forensic analysis confirmed the presence of calcite in healing precipitates.

4.
Materials (Basel) ; 15(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35591498

RESUMO

The entraining and distribution of air voids in the concrete matrix is a complex process that makes the mechanical properties of lightweight foamed concrete (LFC) highly unpredictable. To study the complex nature of aerated concrete, a reliable and robust prediction model is required, employing different machine learning (ML) techniques. This study aims to predict the compressive strength of LFC by using a support vector machine (SVM) as an individual learner along with bagging, boosting, and random forest (RF) as a modified ensemble learner. For that purpose, a database of 191 data points was collected from published literature, where the mix design ingredients, i.e., cement content, sand content, water to cement ratio, and foam volume, were chosen to predict the compressive strength of LFC. The 10-K fold cross-validation method and different statistical error and regression tools, i.e., mean absolute error (MAE), root means square error (RMSE), and coefficient of determinant (R2), were used to evaluate the performance of the developed ML models. The modified ensemble learner (RF) outperforms all models by yielding a strong correlation of R2 = 0.96 along with the lowest statistical error values of MAE = 1.84 MPa and RMSE = 2.52 MPa. Overall, the result suggests that the ensemble learners would significantly enhance the performance and robustness of ML models.

5.
Materials (Basel) ; 14(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34947265

RESUMO

Due to the exceptional qualities of fiber reinforced concrete, its application is expanding day by day. However, its mixed design is mainly based on extensive experimentations. This study aims to construct a machine learning model capable of predicting the fracture behavior of all conceivable fiber reinforced concrete subclasses, especially strain hardening engineered cementitious composites. This study evaluates 15x input parameters that include the ingredients of the mixed design and the fiber properties. As a result, it predicts, for the first time, the post-peak fracture behavior of fiber-reinforced concrete matrices. Five machine learning models are developed, and their outputs are compared. These include artificial neural networks, the support vector machine, the classification and regression tree, the Gaussian process of regression, and the extreme gradient boosting tree. Due to the small size of the available dataset, this article employs a unique technique called the generative adversarial network to build a virtual data set to augment the data and improve accuracy. The results indicate that the extreme gradient boosting tree model has the lowest error and, therefore, the best mimicker in predicting fiber reinforced concrete properties. This article is anticipated to provide a considerable improvement in the recipe design of effective fiber reinforced concrete formulations.

6.
Materials (Basel) ; 14(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924127

RESUMO

The depletion of natural sand resources occurs due to excessive consumption of aggregate for concrete production. Continuous extraction of sand from riverbeds permanently depletes fine aggregate resources. At the same time, a major ecological challenge is the disposal of agricultural waste ash from biomass burning. In this study, an environmental friendly solution is proposed to investigate the incorporation of wheat straw ash (WSA) by replacing 0, 5, 10, 15, and 20% of sand in concrete. Characterization results of WSA revealed that it was well-graded, free from organic impurities, and characterized by perforated and highly porous tubules attributed to its porous morphology. A decrease in fresh concrete density and an increase in slump values were attained by an increase in WSA replacement percentage. An increasing trend in compressive strength, hardened concrete density, and ultrasonic pulse velocity was observed, while a decrease was noticed in the values of water absorption with the increase in WSA replacement percentages and the curing age. The WSA incorporation at all replacement percentages yielded concrete compressive strength values over 21 MPa, which complies with the minimum strength requirement of structural concrete as specified in ACI 318-19. Acid resistance of WSA incorporated concrete improved due to the formation of pozzolanic hydrates as evident in Chappelle activity and thermogravimetric analysis (TGA) results of WSA modified composites. Thus, the incorporation of WSA provides an environmentally friendly solution for its disposal. It helps in conserving natural aggregate resources by providing a suitable alternative to fine aggregate for the construction industry.

7.
PLoS One ; 15(10): e0237264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002034

RESUMO

The precise evaluation of the potential damage caused by large commercial aircraft crash into civil structures, especially nuclear power plants (NPPs), has become essential design consideration. In this study, impact of Boeing 767 against rigid wall and outer containment building (reinforced concrete) of an NPP are simulated in ANSYS/LS-DYNA by using both force time history and missile target interaction methods with impact velocities ranging from 100 m/s to 150 m/s. The results show that impact loads, displacements, stresses for concrete and steel reinforcement, and damaged elements are higher in case of force time history method than missile target interaction method, making the former relatively conservative. It is observed that no perforation or scabbing takes place in case of 100 m/s impact speed, thus preventing any potential leakage. With full mass of Boeing 767 and impact velocity slightly above 100 m/s, the outer containment building can prevent local failure modes. At impact velocity higher than 120 m/s, scabbing and perforations are dominant. This concludes that in design and assessment of NPP structures against aircraft loadings, sufficient thickness or consideration of steel plates are essential to account for local failure modes and overall structural integrity. Furthermore, validation and application of detail 3D finite element and material models to full-scale impact analysis have been carried out to expand the existing database. In rigid wall impact analysis, the impact forces and impulses from FE analysis and Riera's method correspond well, which satisfies the recommendations of relevant standards and further ensure the accuracy of results in full-scale impact analysis. The methodology presented in this paper is extremely effective in simulating structural evaluation of full-scale aircraft impact on important facilities such as NPPs.


Assuntos
Acidentes Aeronáuticos , Aeronaves , Liberação Nociva de Radioativos , Acidentes Aeronáuticos/estatística & dados numéricos , Códigos de Obras , Simulação por Computador , Materiais de Construção/estatística & dados numéricos , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Fenômenos Mecânicos , Modelos Teóricos , Centrais Nucleares , Fenômenos Físicos , Liberação Nociva de Radioativos/prevenção & controle , Liberação Nociva de Radioativos/estatística & dados numéricos , Aço , Colapso Estrutural/prevenção & controle , Colapso Estrutural/estatística & dados numéricos
8.
Materials (Basel) ; 13(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31948005

RESUMO

Carbon nanotubes (CNTs) and graphite nanoplatelets (GNPs) belong to the family of graphite nanomaterials (GNMs) and are promising candidates for enhancing properties of cementitious matrix. However, the problem lies with their improper dispersion. In this paper graphite nanoplatelets are used with carbon nanotubes for dispersion facilitation of CNTs in cement mortar. The intended role is to use the GNPs particles for dispersion of CNTs and to investigate the synergistic effect of resulting nano-intruded mortar. Mechanical properties such as flexure and compressive strength have been studied along with volumetric stability, rheology, and workability. Varying dosages of CNTs to GNPs have been formulated and were analyzed. The hybrid use of CNTs-GNPs shows promise. Scanning electron microscopy reveals that hybrid CNTs/GNPs are well-suited for use in cement mortar composite performing a dual function.

9.
Sci Total Environ ; 703: 135007, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31744694

RESUMO

Various carriers have been investigated by researchers to introduce bacteria inside the concrete however, factors such as local availability, cost and long-term protection of bacterial cells have barred the application of this contemporary technology in the construction industry. In the present study, bacteria were immobilized via recycled coarse aggregate (RCA) and virgin fine aggregate (FA) besides direct induction to preserve natural resources and emulate sustainability. The application of RCA in substitution of virgin coarse aggregate is dropping anthropogenic emissions, minimizing energy consumption and managing construction waste effectively. Vegetative cells of Bacillus subtilis bacterium were incorporated in RCA through vacuum impregnation to boost crack healing efficiency. Crack healing efficiency was studied by quantifying the crack healing widths and percentage of strength regained after pre-cracking at 3,7 and 28 days. Similarly, mechanical properties were gauged via compressive and split tensile strengths at specified intervals while healing precipitate was characterized using analytical means. Results of experimental work revealed that specimens having RCA and 50% virgin FA as bacteria immobilizers exhibited the most efficient crack healing remedy by healing crack widths up to 1.1 mm and recovering 85% of compressive strength. Specimens containing RCA exclusively displayed a maximum of 0.7 mm crack healing widths and 76% strength recovery while direct incorporation of bacteria lagged behind with 0.6 mm crack healing width having 69% strength recovery. Likewise, synergetic formulation and direct induction depicted increase in compressive strength of 4% and 6% respectively while exclusive RCA formulation decreased the compressive strength up to 3% Moreover, field-emission scanning electron microscopy (FE-SEM), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD) and X-ray fluorescent (XRF) characterized the crack healing precipitate as bio-mineralized calcite crystals.


Assuntos
Materiais de Construção , Reciclagem , Força Compressiva , Resíduos Industriais , Gerenciamento de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...