Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187588

RESUMO

The understanding of how different cell types contribute to amyotrophic lateral sclerosis (ALS) pathogenesis is limited. Here we generated a single-nucleus transcriptomic and epigenomic atlas of the frontal cortex of ALS cases with C9orf72 (C9) hexanucleotide repeat expansions and sporadic ALS (sALS). Our findings reveal shared pathways in C9-ALS and sALS, characterized by synaptic dysfunction in excitatory neurons and a disease-associated state in microglia. The disease subtypes diverge with loss of astrocyte homeostasis in C9-ALS, and a more substantial disturbance of inhibitory neurons in sALS. Leveraging high depth 3'-end sequencing, we found a widespread switch towards distal polyadenylation (PA) site usage across ALS subtypes relative to controls. To explore this differential alternative PA (APA), we developed APA-Net, a deep neural network model that uses transcript sequence and expression levels of RNA-binding proteins (RBPs) to predict cell-type specific APA usage and RBP interactions likely to regulate APA across disease subtypes.

2.
Plant Physiol ; 190(4): 2539-2556, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36156105

RESUMO

A signaling complex comprising members of the LORELEI (LRE)-LIKE GPI-anchored protein (LLG) and Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) families perceive RAPID ALKALINIZATION FACTOR (RALF) peptides and regulate growth, reproduction, immunity, and stress responses in Arabidopsis (Arabidopsis thaliana). Genes encoding these proteins are members of multigene families in most angiosperms and could generate thousands of signaling complex variants. However, the links between expansion of these gene families and the functional diversification of this critical signaling complex as well as the evolutionary factors underlying the maintenance of gene duplicates remain unknown. Here, we investigated LLG gene family evolution by sampling land plant genomes and explored the function and expression of angiosperm LLGs. We found that LLG diversity within major land plant lineages is primarily due to lineage-specific duplication events, and that these duplications occurred both early in the history of these lineages and more recently. Our complementation and expression analyses showed that expression divergence (i.e. regulatory subfunctionalization), rather than functional divergence, explains the retention of LLG paralogs. Interestingly, all but one monocot and all eudicot species examined had an LLG copy with preferential expression in male reproductive tissues, while the other duplicate copies showed highest levels of expression in female or vegetative tissues. The single LLG copy in Amborella trichopoda is expressed vastly higher in male compared to in female reproductive or vegetative tissues. We propose that expression divergence plays an important role in retention of LLG duplicates in angiosperms.


Assuntos
Arabidopsis , Embriófitas , Magnoliopsida , Arabidopsis/metabolismo , Família Multigênica , Fosfotransferases/genética , Sementes/metabolismo , Embriófitas/genética , Magnoliopsida/genética , Magnoliopsida/metabolismo , Proteínas/genética , Duplicação Gênica , Evolução Molecular , Filogenia
3.
Hepatol Commun ; 6(4): 821-840, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34792289

RESUMO

The critical functions of the human liver are coordinated through the interactions of hepatic parenchymal and non-parenchymal cells. Recent advances in single-cell transcriptional approaches have enabled an examination of the human liver with unprecedented resolution. However, dissociation-related cell perturbation can limit the ability to fully capture the human liver's parenchymal cell fraction, which limits the ability to comprehensively profile this organ. Here, we report the transcriptional landscape of 73,295 cells from the human liver using matched single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq). The addition of snRNA-seq enabled the characterization of interzonal hepatocytes at a single-cell resolution, revealed the presence of rare subtypes of liver mesenchymal cells, and facilitated the detection of cholangiocyte progenitors that had only been observed during in vitro differentiation experiments. However, T and B lymphocytes and natural killer cells were only distinguishable using scRNA-seq, highlighting the importance of applying both technologies to obtain a complete map of tissue-resident cell types. We validated the distinct spatial distribution of the hepatocyte, cholangiocyte, and mesenchymal cell populations by an independent spatial transcriptomics data set and immunohistochemistry. Conclusion: Our study provides a systematic comparison of the transcriptomes captured by scRNA-seq and snRNA-seq and delivers a high-resolution map of the parenchymal cell populations in the healthy human liver.


Assuntos
Fígado , Análise de Célula Única , Núcleo Celular/genética , Humanos , Análise de Sequência de RNA , Transcriptoma/genética
4.
ACS Nano ; 14(4): 4698-4715, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32255624

RESUMO

There is a tremendous focus on the application of nanomaterials for the treatment of cancer. Nonprimate models are conventionally used to assess the biomedical utility of nanomaterials. However, these animals often lack an intact immunological background, and the tumors in these animals do not develop spontaneously. We introduce a preclinical woodchuck hepatitis virus-induced liver cancer model as a platform for nanoparticle (NP)-based in vivo experiments. Liver cancer development in these out-bred animals occurs as a result of persistent viral infection, mimicking human hepatitis B virus-induced HCC development. We highlight how this model addresses key gaps associated with other commonly used tumor models. We employed this model to (1) track organ biodistribution of gold NPs after intravenous administration, (2) examine their subcellular localization in the liver, (3) determine clearance kinetics, and (4) characterize the identity of hepatic macrophages that take up NPs using RNA-sequencing (RNA-seq). We found that the liver and spleen were the primary sites of NP accumulation. Subcellular analyses revealed accumulation of NPs in the lysosomes of CD14+ cells. Through RNA-seq, we uncovered that immunosuppressive macrophages within the woodchuck liver are the major cell type that take up injected NPs. The woodchuck-HCC model has the potential to be an invaluable tool to examine NP-based immune modifiers that promote host anti-tumor immunity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Animais , Modelos Animais de Doenças , Humanos , Fígado , Marmota , Distribuição Tecidual
5.
FASEB J ; 33(3): 3968-3984, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509117

RESUMO

γ-Aminobutyric acid (GABA) administration has been shown to increase ß-cell mass, leading to a reversal of type 1 diabetes in mice. Whether GABA has any effect on ß cells of healthy and prediabetic/glucose-intolerant obese mice remains unknown. In the present study, we show that oral GABA administration ( ad libitum) to mice indeed increased pancreatic ß-cell mass, which led to a modest enhancement in insulin secretion and glucose tolerance. However, GABA treatment did not further increase insulin-positive islet area in high fat diet-fed mice and was unable to prevent or reverse glucose intolerance and insulin resistance. Mechanistically, whether in vivo or in vitro, GABA treatment increased ß-cell proliferation. In vitro, the effect was shown to be mediated via the GABAA receptor. Single-cell RNA sequencing analysis revealed that GABA preferentially up-regulated pathways linked to ß-cell proliferation and simultaneously down-regulated those networks required for other processes, including insulin biosynthesis and metabolism. Interestingly, single-cell differential expression analysis revealed GABA treatment gave rise to a distinct subpopulation of ß cells with a unique transcriptional signature, including urocortin 3 ( ucn3), wnt4, and hepacam2. Taken together, this study provides new mechanistic insight into the proliferative nature of GABA but suggests that ß-cell compensation associated with prediabetes overlaps with, and negates, its proliferative effects.-Untereiner, A., Abdo, S., Bhattacharjee, A., Gohil, H., Pourasgari, F., Ibeh, N., Lai, M., Batchuluun, B., Wong, A., Khuu, N., Liu, Y., Al Rijjal, D., Winegarden, N., Virtanen, C., Orser, B. A., Cabrera, O., Varga, G., Rocheleau, J., Dai, F. F., Wheeler, M. B. GABA promotes ß-cell proliferation, but does not overcome impaired glucose homeostasis associated with diet-induced obesity.


Assuntos
Proliferação de Células , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidade/metabolismo , Transcriptoma , Ácido gama-Aminobutírico/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Homeostase , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Receptores de GABA-A/metabolismo , Urocortinas/metabolismo
6.
Nat Commun ; 9(1): 4383, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348985

RESUMO

The liver is the largest solid organ in the body and is critical for metabolic and immune functions. However, little is known about the cells that make up the human liver and its immune microenvironment. Here we report a map of the cellular landscape of the human liver using single-cell RNA sequencing. We provide the transcriptional profiles of 8444 parenchymal and non-parenchymal cells obtained from the fractionation of fresh hepatic tissue from five human livers. Using gene expression patterns, flow cytometry, and immunohistochemical examinations, we identify 20 discrete cell populations of hepatocytes, endothelial cells, cholangiocytes, hepatic stellate cells, B cells, conventional and non-conventional T cells, NK-like cells, and distinct intrahepatic monocyte/macrophage populations. Together, our study presents a comprehensive view of the human liver at single-cell resolution that outlines the characteristics of resident cells in the liver, and in particular provides a map of the human hepatic immune microenvironment.


Assuntos
Fígado/citologia , Fígado/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Linfócitos B/citologia , Linfócitos B/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Monócitos/citologia , Monócitos/metabolismo , Análise de Sequência de RNA
7.
Plant Cell ; 25(5): 1726-39, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23667126

RESUMO

COMPARATIVE GENE IDENTIFICATION-58 (CGI-58) is a key regulator of lipid metabolism and signaling in mammals, but its underlying mechanisms are unclear. Disruption of CGI-58 in either mammals or plants results in a significant increase in triacylglycerol (TAG), suggesting that CGI-58 activity is evolutionarily conserved. However, plants lack proteins that are important for CGI-58 activity in mammals. Here, we demonstrate that CGI-58 functions by interacting with the PEROXISOMAL ABC-TRANSPORTER1 (PXA1), a protein that transports a variety of substrates into peroxisomes for their subsequent metabolism by ß-oxidation, including fatty acids and lipophilic hormone precursors of the jasmonate and auxin biosynthetic pathways. We also show that mutant cgi-58 plants display changes in jasmonate biosynthesis, auxin signaling, and lipid metabolism consistent with reduced PXA1 activity in planta and that, based on the double mutant cgi-58 pxa1, PXA1 is epistatic to CGI-58 in all of these processes. However, CGI-58 was not required for the PXA1-dependent breakdown of TAG in germinated seeds. Collectively, the results reveal that CGI-58 positively regulates many aspects of PXA1 activity in plants and that these two proteins function to coregulate lipid metabolism and signaling, particularly in nonseed vegetative tissues. Similarities and differences of CGI-58 activity in plants versus animals are discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aciltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metabolismo dos Lipídeos , Transportadores de Cassetes de Ligação de ATP/genética , Aciltransferases/genética , Adenosina Trifosfatases , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Homeostase , Hidrolases/genética , Hidrolases/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Oxilipinas/metabolismo , Peroxissomos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Ligação Proteica , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Triglicerídeos/metabolismo , Técnicas do Sistema de Duplo-Híbrido
8.
Plant J ; 71(2): 251-62, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22404138

RESUMO

Phosphoenolpyruvate carboxylase (PEPC) from developing castor oil seeds (COS) exists as two distinct oligomeric isoforms. The typical class-1 PEPC homotetramer consists of 107-kDa plant-type PEPC (PTPC) subunits, whereas the allosterically desensitized 910-kDa class-2 PEPC hetero-octamer arises from the association of class-1 PEPC with 118-kDa bacterial-type PEPC (BTPC) subunits. The in vivo interaction and subcellular location of COS BTPC and PTPC were assessed by imaging fluorescent protein (FP)-tagged PEPCs in tobacco suspension-cultured cells. The BTPC-FP mainly localized to cytoplasmic punctate/globular structures, identified as mitochondria by co-immunostaining of endogenous cytochrome oxidase. Inhibition of respiration with KCN resulted in proportional decreases and increases in mitochondrial versus cytosolic BTPC-FP, respectively. The FP-PTPC and NLS-FP-PTPC (containing an appended nuclear localization signal, NLS) localized to the cytosol and nucleus, respectively, but both co-localized with mitochondrial-associated BTPC when co-expressed with BTPC-FP. Transmission electron microscopy of immunogold-labeled developing COS revealed that BTPC and PTPC are localized at the mitochondrial (outer) envelope, as well as the cytosol. Moreover, thermolysin-sensitive BTPC and PTPC polypeptides were detected on immunoblots of purified COS mitochondria. Overall, our results demonstrate that: (i) COS BTPC and PTPC interact in vivo as a class-2 PEPC complex that associates with the surface of mitochondria, (ii) BTPC's unique and divergent intrinsically disordered region mediates its interaction with PTPC, whereas (iii) the PTPC-containing class-1 PEPC is entirely cytosolic. We hypothesize that mitochondrial-associated class-2 PEPC facilitates rapid refixation of respiratory CO(2) while sustaining a large anaplerotic flux to replenish tricarboxylic acid cycle C-skeletons withdrawn for biosynthesis.


Assuntos
Mitocôndrias/enzimologia , Fosfoenolpiruvato Carboxilase/metabolismo , Ricinus communis/enzimologia , Sementes/enzimologia , Sequência de Aminoácidos , Ricinus communis/citologia , Ricinus communis/genética , Técnicas de Cultura de Células , Biologia Computacional , Endosperma/citologia , Endosperma/enzimologia , Endosperma/genética , Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/genética , Dados de Sequência Molecular , Fosfoenolpiruvato Carboxilase/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Transporte Proteico , Proteínas Recombinantes de Fusão , Sementes/citologia , Sementes/genética , Alinhamento de Sequência , Nicotiana/citologia , Nicotiana/enzimologia , Nicotiana/genética
9.
Plant Signal Behav ; 6(3): 422-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21350343

RESUMO

The regulation of fatty acid desaturase activity in plants is important for determining the polyunsaturated fatty acid content of cellular membranes, which is often rapidly adjusted in plant cells in response to temperature change. Recent studies have demonstrated that the endoplasmic reticulum (ER)-localized omega-3 desaturases (Fad3s) are regulated extensively at the post-transcriptional level by both temperature-dependent changes in translational efficiency, as well as modulation of protein half-life. While the N-terminal sequences of Fad3 proteins were shown to contain information that mediates their rapid, proteasome-dependent protein turnover in both plant and yeast cells, it is currently unknown whether these sequences alone are sufficient to direct protein degradation. In this report, we fused the N-terminal sequences of two different Fad3 proteins to an ER-localized fluorescent protein reporter, consisting of the green fluorescent protein and the ER integral membrane protein cytochrome b5, and then measured (via microscopy) the degradation of the resulting fusion proteins in plant suspension-cultured cells relative to a second, co-expressed fluorescent reporter protein. Overall, the results demonstrate that the N-termini of both Fad3 proteins are sufficient for conferring rapid, proteasome-dependent degradation to an ER-bound marker protein. 


Assuntos
Aleurites/enzimologia , Brassica/enzimologia , Retículo Endoplasmático/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Modelos Biológicos
10.
Front Plant Sci ; 2: 20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22639582

RESUMO

The endosomal sorting complex required for transport (ESCRT) consists of several multi-protein subcomplexes which assemble sequentially at the endosomal surface and function in multivesicular body (MVB) biogenesis. While ESCRT has been relatively well characterized in yeasts and mammals, comparably little is known about ESCRT in plants. Here we explored the yeast two-hybrid protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery. We show that the Arabidopsis ESCRT interactome possesses a number of protein-protein interactions that are either conserved in yeasts and mammals or distinct to plants. We show also that most of the Arabidopsis ESCRT proteins examined at least partially localize to MVBs in plant cells when ectopically expressed on their own or co-expressed with other interacting ESCRT proteins, and some also induce abnormal MVB phenotypes, consistent with their proposed functional role(s) as part of the ESCRT machinery in Arabidopsis. Overall, our results help define the plant ESCRT machinery by highlighting both conserved and unique features when compared to ESCRT in other evolutionarily diverse organisms, providing a foundation for further exploration of ESCRT in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...