Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686886

RESUMO

Sarcopenic obesity, low muscle mass, and high body fat are growing health concerns in the aging population. This review highlights the need for standardized criteria and explores nutraceuticals as potential therapeutic agents. Sarcopenic obesity is associated with insulin resistance, inflammation, hormonal changes, and reduced physical activity. These factors lead to impaired muscle activity, intramuscular fat accumulation, and reduced protein synthesis, resulting in muscle catabolism and increased fat mass. Myostatin and irisin are myokines that regulate muscle synthesis and energy expenditure, respectively. Nutritional supplementation with vitamin D and calcium is recommended for increasing muscle mass and reducing body fat content. Testosterone therapy decreases fat mass and improves muscle strength. Vitamin K, specifically menaquinone-4 (MK-4), improves mitochondrial function and reduces muscle damage. Irisin is a hormone secreted during exercise that enhances oxidative metabolism, prevents insulin resistance and obesity, and improves bone quality. Low-glycemic-index diets and green cardamom are potential methods for managing sarcopenic obesity. In conclusion, along with exercise and dietary support, nutraceuticals, such as vitamin D, calcium, vitamin K, and natural agonists of irisin or testosterone, can serve as promising future therapeutic alternatives.


Assuntos
Resistência à Insulina , Sarcopenia , Humanos , Idoso , Sarcopenia/terapia , Cálcio , Fibronectinas , Suplementos Nutricionais , Obesidade/complicações , Obesidade/terapia , Vitaminas , Cálcio da Dieta , Vitamina K , Vitamina D/uso terapêutico
2.
ACS Nano ; 16(5): 7848-7860, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35522525

RESUMO

Recently, various attempts have been made for light-to-fuels conversion, often with limited performance. Herein we report active and lasting three-factored hierarchical photocatalysts consisting of plasmon Au, ceria semiconductor, and graphene conductor for hydrogen production. The Au@CeO2/Gr2.0 entity (graphene outer shell thickness of 2.0 nm) under visible-light irradiation exhibits a colossal achievement (8.0 µmol mgcat-1 h-1), which is 2.2- and 14.3-fold higher than those of binary Au@CeO2 and free-standing CeO2 species, outperforming the currently available catalysts. Yet, it delivers a high maximum quantum yield efficiency of 38.4% at an incident wavelength of 560 nm. These improvements are unambiguously attributed to three indispensable effects: (1) the plasmon resonant energy is light-excited and transferred to produce hot electrons localizing near the surface of Au@CeO2, where (2) the high-surface-area Gr conductive shell will capture them to direct hydrogen evolution reactions, and (3) the active graphene hybridized on the defect-rich surface of Au@CeO2 favorably adsorbs hydrogen atoms, which all bring up thorough insight into the working of a ternary Au@CeO2/Gr catalyst system in terms of light-to-hydrogen conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...