Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(1): 98-106, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36573824

RESUMO

Directly identifying the presence of the virus in infected hosts with an appropriate speed and sensitivity permits early epidemic management even during the presymptomatic incubation period of infection. Here, we synthesize a bioinspired plasmo-virus (BPV) particle for rapid and sensitive point-of-care (POC) detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via a self-assembled plasmonic nanoprobe array on spike proteins. The BPV enables strong near-infrared (NIR) extinction peaks caused by plasmonic nanogaps. We quantify SARS-CoV-2 in viral transport medium (VTM) at low titers within 10 min with a limit of detection (LOD) of 1.4 × 101 pfu/mL, which is 103 times more sensitive than the current gold-standard method. The high-sensitivity and high-speed POC detection may be widely used for the timely, individualized diagnosis of infectious agents in low-resource settings.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Teste para COVID-19 , Limite de Detecção
2.
ACS Nano ; 15(4): 7722-7734, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33825460

RESUMO

Enzymatic colorimetric analysis of metabolites provides signatures of energy conversion and biosynthesis associated with disease onsets and progressions. Miniaturized photodetectors based on emerging two-dimensional transition metal dichalcogenides (TMDCs) promise to advance point-of-care diagnosis employing highly sensitive enzymatic colorimetric detection. Reducing diagnosis costs requires a batched multisample assay. The construction of few-layer TMDC photodetector arrays with consistent performance is imperative to realize optical signal detection for a miniature batched multisample enzymatic colorimetric assay. However, few studies have promoted an optical reader with TMDC photodetector arrays for on-chip operation. Here, we constructed 4 × 4 pixel arrays of miniaturized molybdenum disulfide (MoS2) photodetectors and integrated them with microfluidic enzyme reaction chambers to create an optoelectronic biosensor chip device. The fabricated device allowed us to achieve arrayed on-chip enzymatic colorimetric detection of d-lactate, a blood biomarker signifying the bacterial translocation from the intestine, with a limit of detection that is 1000-fold smaller than the clinical baseline, a 10 min assay time, high selectivity, and reasonably small variability across the entire arrays. The enzyme (Ez)/MoS2 optoelectronic biosensor unit consistently detected d-lactate in clinically important biofluids, such as saliva, urine, plasma, and serum of swine and humans with a wide detection range (10-3-103 µg/mL). Furthermore, the biosensor enabled us to show that high serum d-lactate levels are associated with the symptoms of systemic infection and inflammation. The lensless, optical waveguide-free device architecture should readily facilitate development of a monolithically integrated hand-held module for timely, cost-effective diagnosis of metabolic disorders in near-patient settings.


Assuntos
Técnicas Biossensoriais , Colorimetria , Animais , Biomarcadores , Humanos , Molibdênio , Sistemas Automatizados de Assistência Junto ao Leito , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...