Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0295006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306337

RESUMO

Oat crown rust, caused by Puccinia coronata Corda f. sp. avenae Eriks. (Pca), is a major biotic impediment to global oat production. Crown rust resistance has been described in oat diploid species A. strigosa accession PI 258731 and resistance from this accession has been successfully introgressed into hexaploid A. sativa germplasm. The current study focuses on 1) mapping the location of QTL containing resistance and evaluating the number of quantitative trait loci (QTL) conditioning resistance in PI 258731; 2) understanding the relationship between the original genomic location in A. strigosa and the location of the introgression in the A. sativa genome; 3) identifying molecular markers tightly linked with PI 258731 resistance loci that could be used for marker assisted selection and detection of this resistance in diverse A. strigosa accessions. To achieve this, A. strigosa accessions, PI 258731 and PI 573582 were crossed to produce 168 F5:6 recombinant inbred lines (RILs) through single seed descent. Parents and RILs were genotyped with the 6K Illumina SNP array which generated 168 segregating SNPs. Seedling reactions to two isolates of Pca (races TTTG, QTRG) were conditioned by two genes (0.6 cM apart) in this population. Linkage mapping placed these two resistant loci to 7.7 (QTRG) to 8 (TTTG) cM region on LG7. Field reaction data was used for QTL analysis and the results of interval mapping (MIM) revealed a major QTL (QPc.FD-AS-AA4) for field resistance. SNP marker assays were developed and tested in 125 diverse A. strigosa accessions that were rated for crown rust resistance in Baton Rouge, LA and Gainesville, FL and as seedlings against races TTTG and QTRG. Our data proposed SNP marker GMI_ES17_c6425_188 as a candidate for use in marker-assisted selection, in addition to the marker GMI_ES02_c37788_255 suggested by Rine's group, which provides an additional tool in facilitating the utilization of this gene in oat breeding programs.


Assuntos
Avena , Basidiomycota , Avena/genética , Diploide , Resistência à Doença/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Plântula/genética
2.
Plant Dis ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277650

RESUMO

Puccinia coronata f. sp. avenae (Pca) is an important foliar pathogen of oat which causes crown rust disease. The virulence profile of 48 Pca isolates derived from different locations in Australia was characterised using a collection of oat lines often utilised in rust surveys in the USA and Australia. This analysis indicates that Pca populations in Eastern Australia are broadly virulent, in contrast to the population in Western Australia (WA). Several oat lines/Pc genes are effective against all rust samples collected from WA, suggesting they may provide useful resistance in this region if deployed in combination. We identified 19 lines from the USA oat differential set that display disease resistance to Pca in WA, some in agreement with previous rust survey reports. We adopted the 10-letter nomenclature system to define oat crown rust races in Australia and compare the frequency of those virulence traits to published data from the USA. Based on this nomenclature, 42 unique races were detected among the 48 isolates, reflecting the high diversity of virulence phenotypes for Pca in Australia. Nevertheless, the Pca population in the USA is substantially more broadly virulent than that of Australia. Close examination of resistance profiles for the oat differential set lines after infection with Pca supports hypotheses of allelism or redundancy among Pc genes or the presence of several resistance genes in some oat differential lines. These findings illustrate the need to deconvolute the oat differential set using molecular tools.

3.
Mol Plant Microbe Interact ; 37(3): 290-303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37955552

RESUMO

Puccinia coronata f. sp. avenae (Pca) is an important fungal pathogen causing crown rust that impacts oat production worldwide. Genetic resistance for crop protection against Pca is often overcome by the rapid virulence evolution of the pathogen. This study investigated the factors shaping adaptive evolution of Pca using pathogen populations from distinct geographic regions within the United States and South Africa. Phenotypic and genome-wide sequencing data of these diverse Pca collections, including 217 isolates, uncovered phylogenetic relationships and established distinct genetic composition between populations from northern and southern regions from the United States and South Africa. The population dynamics of Pca involve a bidirectional movement of inoculum between northern and southern regions of the United States and contributions from clonality and sexuality. The population from South Africa is solely clonal. A genome-wide association study (GWAS) employing a haplotype-resolved Pca reference genome was used to define 11 virulence-associated loci corresponding to 25 oat differential lines. These regions were screened to determine candidate Avr effector genes. Overall, the GWAS results allowed us to identify the underlying genetic factors controlling pathogen recognition in an oat differential set used in the United States to assign pathogen races (pathotypes). Key GWAS findings support complex genetic interactions in several oat lines, suggesting allelism among resistance genes or redundancy of genes included in the differential set, multiple resistance genes recognizing genetically linked Avr effector genes, or potentially epistatic relationships. A careful evaluation of the composition of the oat differential set accompanied by the development or implementation of molecular markers is recommended. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota , Resistência à Doença , Puccinia , Resistência à Doença/genética , Avena/genética , Avena/microbiologia , Virulência/genética , Estudo de Associação Genômica Ampla , Filogenia , Doenças das Plantas/microbiologia , Basidiomycota/genética , Dinâmica Populacional
4.
Plant Dis ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37953229

RESUMO

To better understand how the pathogenicity of the oat crown rust pathogen, Puccinia coronata f. sp. avenae (Pca), has changed in the United States, 30 years of USDA survey isolates (n=5,456) tested on 30-40 differential lines were analyzed for overall and Pc resistance gene specific virulence trends and correlations. Pca is incredibly pathologically diverse with 88% of races represented by a single isolate. There are a slightly higher proportion of unique races from the Northern region of the United States and for one fourth of the years, Northern region isolates were significantly more virulent than Southern isolates which supports the idea that sexual recombination in this region is mediated by the alternate host as a major factor in creating new races. However, there is also support for regular isolate movement between North and South regions as isolates in the United States are steadily accumulating virulences at a rate of 0.35 virulences per year. Virulence significantly increased for 23 and decreased for 4 of the 40 differential lines. In the past few years, virulence has reached 90% or greater for 16 differential lines. There were also strong correlations in virulence for certain Pc genes that are likely identical, allelic, or target the same or closely linked pathogen effectors (e.g. Pc39, Pc55, and Pc71), and the results were largely in concordance with recent GWAS effector studies using USDA isolate subsets. Understanding changes in Pca pathogenicity is essential for the responsible deployment and management of Pc resistance genes for sustainable and profitable oat production.

5.
Proc Natl Acad Sci U S A ; 120(38): e2306494120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37703281

RESUMO

Wheat is an important contributor to global food security, and further improvements are required to feed a growing human population. Functional genetics and genomics tools can help us to understand the function of different genes and to engineer beneficial changes. In this study, we used a promoter capture assay to sequence 2-kb regions upstream of all high-confidence annotated genes from 1,513 mutagenized plants from the tetraploid wheat variety Kronos. We identified 4.3 million induced mutations with an accuracy of 99.8%, resulting in a mutation density of 41.9 mutations per kb. We also remapped Kronos exome capture reads to Chinese Spring RefSeq v1.1, identified 4.7 million mutations, and predicted their effects on annotated genes. Using these predictions, we identified 59% more nonsynonymous substitutions and 49% more truncation mutations than in the original study. To show the biological value of the promoter dataset, we selected two mutations within the promoter of the VRN-A1 vernalization gene. Both mutations, located within transcription factor binding sites, significantly altered VRN-A1 expression, and one reduced the number of spikelets per spike. These publicly available sequenced mutant datasets provide rapid and inexpensive access to induced variation in the promoters and coding regions of most wheat genes. These mutations can be used to understand and modulate gene expression and phenotypes for both basic and commercial applications, where limited governmental regulations can facilitate deployment. These mutant collections, together with gene editing, provide valuable tools to accelerate functional genetic studies in this economically important crop.


Assuntos
Regiões Promotoras Genéticas , Triticum , Bioensaio , Expressão Gênica , Mutação , Triticum/genética
6.
Phytopathology ; 113(7): 1307-1316, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36721375

RESUMO

Six quantitative trait loci (QTLs) for adult plant resistance against oat crown rust (Puccinia coronata f. sp. avenae) were identified from mapping three recombinant inbred populations. Using genotyping-by-sequencing with markers called against the OT3098 v1 reference genome, the QTLs were mapped on six different chromosomes: Chr1D, Chr4D, Chr5A, Chr5D, Chr7A, and Chr7C. Composite interval mapping with marker cofactor selection showed that the phenotypic variance explained by all identified QTLs for coefficient of infection range from 12.2 to 46.9%, whereas heritability estimates ranged from 0.11 to 0.38. The significant regions were narrowed down to intervals of 3.9 to 25 cM, equivalent to physical distances of 11 to 133 Mb. At least two flanking single-nucleotide polymorphism markers were identified within 10 cM of each QTL that could be used in marker-assisted introgression, pyramiding, and selection. The additive effects of the QTLs in each population were determined using single-nucleotide polymorphism haplotype data, which showed a significantly lower coefficient of infection in lines homozygous for the resistant alleles. Analysis of pairwise linkage disequilibrium also revealed high correlation of markers and presence of linkage blocks in the significant regions. To further facilitate marker-assisted breeding, polymerase chain reaction allelic competitive extension (PACE) markers for the adult plant resistance loci were developed. Putative candidate genes were also identified in each of the significant regions, which include resistance gene analogs that encode for kinases, ligases, and predicted receptors of avirulence proteins from pathogens.


Assuntos
Avena , Basidiomycota , Avena/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Resistência à Doença/genética
7.
Genetics ; 223(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36106985

RESUMO

There is limited information regarding the morphometric relationships of panicle traits in oat (Avena sativa) and their contribution to phenology and growth, physiology, and pathology traits important for yield. To model panicle growth and development and identify genomic regions associated with corresponding traits, 10 diverse spring oat mapping populations (n = 2,993) were evaluated in the field and 9 genotyped via genotyping-by-sequencing. Representative panicles from all progeny individuals, parents, and check lines were scanned, and images were analyzed using manual and automated techniques, resulting in over 60 unique panicle, rachis, and spikelet variables. Spatial modeling and days to heading were used to account for environmental and phenological variances, respectively. Panicle variables were intercorrelated, providing reproducible archetypal and growth models. Notably, adult plant resistance for oat crown rust was most prominent for taller, stiff stalked plants having a more open panicle structure. Within and among family variance for panicle traits reflected the moderate-to-high heritability and mutual genome-wide associations (hotspots) with numerous high-effect loci. Candidate genes and potential breeding applications are discussed. This work adds to the growing genetic resources for oat and provides a unique perspective on the genetic basis of panicle architecture in cereal crops.


Assuntos
Avena , Inflorescência , Avena/genética , Estudo de Associação Genômica Ampla , Inflorescência/genética , Fenótipo , Melhoramento Vegetal
8.
Theor Appl Genet ; 135(10): 3307-3321, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029319

RESUMO

KEY MESSAGE: We mapped three adult plant resistance (APR) loci on oat chromosomes 4D and 6C and developed flanking KASP/PACE markers for marker-assisted selection and gene pyramiding. Using sequence orthology search and the available oat genomic and transcriptomic data, we surveyed these genomic regions for genes that may control disease resistance. Sources of durable disease resistance are needed to minimize yield losses in cultivated oat caused by crown rust (Puccinia coronata f. sp. avenae). In this study, we developed five oat recombinant inbred line mapping populations to identify sources of adult plant resistance from crosses between five APR donors and Otana, a susceptible variety. The preliminary bulk segregant mapping based on allele frequencies showed two regions in linkage group Mrg21 (Chr4D) that are associated with the APR phenotype in all five populations. Six markers from these regions in Chr4D were converted to high-throughput allele specific PCR assays and were used to genotype all individuals in each population. Simple interval mapping showed two peaks in Chr4D, named QPc.APR-4D.1 and QPc.APR-4D.2, which were detected in the OtanaA/CI4706-2 and OtanaA/CI9416-2 and in the Otana/PI189733, OtanaD/PI260616, and OtanaA/CI8000-4 populations, respectively. These results were validated by mapping two entire populations, Otana/PI189733 and OtanaA/CI9416, genotyped using Illumina HiSeq, in which polymorphisms were called against the OT3098 oat reference genome. Composite interval mapping results confirmed the presence of the two quantitative trait loci (QTL) located on oat chromosome 4D and an additional QTL with a smaller effect located on chromosome 6C. This mapping approach also narrowed down the physical intervals to between 5 and 19 Mb, and indicated that QPc.APR-4D.1, QPc.APR-4D.2, and QPc.APR-6C explained 43.4%, 38.5%, and 21.5% of the phenotypic variation, respectively. In a survey of the gene content of each QTL, several clusters of disease resistance genes that may contribute to APR were found. The allele specific PCR markers developed for these QTL regions would be beneficial for marker-assisted breeding, gene pyramiding, and future cloning of resistance genes from oat.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Avena/genética , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Puccinia
9.
G3 (Bethesda) ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35731221

RESUMO

Advances in sequencing technologies as well as development of algorithms and workflows have made it possible to generate fully phased genome references for organisms with nonhaploid genomes such as dikaryotic rust fungi. To enable discovery of pathogen effectors and further our understanding of virulence evolution, we generated a chromosome-scale assembly for each of the 2 nuclear genomes of the oat crown rust pathogen, Puccinia coronata f. sp. avenae (Pca). This resource complements 2 previously released partially phased genome references of Pca, which display virulence traits absent in the isolate of historic race 203 (isolate Pca203) which was selected for this genome project. A fully phased, chromosome-level reference for Pca203 was generated using PacBio reads and Hi-C data and a recently developed pipeline named NuclearPhaser for phase assignment of contigs and phase switch correction. With 18 chromosomes in each haplotype and a total size of 208.10 Mbp, Pca203 has the same number of chromosomes as other cereal rust fungi such as Puccinia graminis f. sp. tritici and Puccinia triticina, the causal agents of wheat stem rust and wheat leaf rust, respectively. The Pca203 reference marks the third fully phased chromosome-level assembly of a cereal rust to date. Here, we demonstrate that the chromosomes of these 3 Puccinia species are syntenous and that chromosomal size variations are primarily due to differences in repeat element content.


Assuntos
Basidiomycota , Puccinia , Avena/genética , Avena/microbiologia , Basidiomycota/genética , Cromossomos , Grão Comestível/genética , Genômica , Doenças das Plantas/microbiologia
10.
Life (Basel) ; 11(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34575104

RESUMO

Susceptible and resistant germplasm respond differently to pathogenic attack, including virus infections. We compared the transcriptome changes between a resistant wheat cultivar, Sonalika, and a susceptible cultivar, WL711, to understand this process in wheat against wheat dwarf India virus (WDIV) infection. A total of 2760 and 1853 genes were differentially expressed in virus-infected and mock-inoculated Sonalika, respectively, compared to WL711. The overrepresentation of genes involved in signaling, hormone metabolism, enzymes, secondary metabolites, proteolysis, and transcription factors was documented, including the overexpression of multiple PR proteins. We hypothesize that the virus resistance in Sonalika is likely due to strong intracellular surveillance via the action of multiple PR proteins (PR1, RAR1, and RPM1) and ChiB. Other genes such as PIP1, LIP1, DnaJ, defensins, oxalate oxidase, ankyrin repeat protein, serine-threonine kinase, SR proteins, beta-1,3-glucanases, and O-methyltransferases had a significant differential expression and play roles in stress tolerance, may also be contributing towards the virus resistance in Sonalika. In addition, we identified putative genes with unknown functions, which are only expressed in response to WDIV infection in Sonalika. The role of these genes could be further validated and utilized in engineering resistance in wheat and other crops.

11.
Front Plant Sci ; 12: 657796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968112

RESUMO

Wheat stem rust disease caused by Puccinia graminis f. sp. tritici (Pgt) is a global threat to wheat production. Fast evolving populations of Pgt limit the efficacy of plant genetic resistance and constrain disease management strategies. Understanding molecular mechanisms that lead to rust infection and disease susceptibility could deliver novel strategies to deploy crop resistance through genetic loss of disease susceptibility. We used comparative transcriptome-based and orthology-guided approaches to characterize gene expression changes associated with Pgt infection in susceptible and resistant Triticum aestivum genotypes as well as the non-host Brachypodium distachyon. We targeted our analysis to genes with differential expression in T. aestivum and genes suppressed or not affected in B. distachyon and report several processes potentially linked to susceptibility to Pgt, such as cell death suppression and impairment of photosynthesis. We complemented our approach with a gene co-expression network analysis to identify wheat targets to deliver resistance to Pgt through removal or modification of putative susceptibility genes.

12.
PLoS Genet ; 16(12): e1009291, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370783

RESUMO

Pathogen populations are expected to evolve virulence traits in response to resistance deployed in agricultural settings. However, few temporal datasets have been available to characterize this process at the population level. Here, we examined two temporally separated populations of Puccinia coronata f. sp. avenae (Pca), which causes crown rust disease in oat (Avena sativa) sampled from 1990 to 2015. We show that a substantial increase in virulence occurred from 1990 to 2015 and this was associated with a genetic differentiation between populations detected by genome-wide sequencing. We found strong evidence for genetic recombination in these populations, showing the importance of the alternate host in generating genotypic variation through sexual reproduction. However, asexual expansion of some clonal lineages was also observed within years. Genome-wide association analysis identified seven Avr loci associated with virulence towards fifteen Pc resistance genes in oat and suggests that some groups of Pc genes recognize the same pathogen effectors. The temporal shift in virulence patterns in the Pca populations between 1990 and 2015 is associated with changes in allele frequency in these genomic regions. Nucleotide diversity patterns at a single Avr locus corresponding to Pc38, Pc39, Pc55, Pc63, Pc70, and Pc71 showed evidence of a selective sweep associated with the shift to virulence towards these resistance genes in all 2015 collected isolates.


Assuntos
Frequência do Gene , Genes Fúngicos , Puccinia/genética , Avena/microbiologia , Polimorfismo Genético , Puccinia/patogenicidade , Seleção Genética , Virulência/genética
13.
Sci Rep ; 10(1): 17610, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077800

RESUMO

Eight advanced durum-breeding lines were treated with 5-methyl-azacytidine to test the feasibility of generating sources of Fusarium head blight (FHB) resistance. Of the 800 treated seeds, 415 germinated and were advanced up to four (M4) generations by selfing. Thirty-two of the resulting 415 M4 lines were selected following preliminary screening and were further tested for FHB resistance for three years at two field locations, and in the greenhouse. Five of the 32 M4 lines showed less than 30% disease severity, as compared to the parental lines and susceptible checks. Fusarium-damaged kernels and deoxynivalenol analyses supported the findings of the field and greenhouse disease assessments. Two of the most resistant M4 lines were crossed to a susceptible parent, advanced to third generation (BC1:F3) and were tested for stability and inheritance of the resistance. About, one third of the BC1:F3 lines showed FHB resistance similar to their M4 parents. The overall methylation levels (%) were compared using FASTmC method, which did not show a significant difference between M4 and parental lines. However, transcriptome analysis of one M4 line revealed significant number of differentially expressed genes related to biosynthesis of secondary metabolites, MAPK signaling, photosynthesis, starch and sucrose metabolism, plant hormone signal transduction and plant-pathogen interaction pathways, which may have helped in improved FHB resistance.


Assuntos
Resistência à Doença/genética , Epigênese Genética , Fusarium , Doenças das Plantas/genética , Triticum/genética , Expressão Gênica , Perfilação da Expressão Gênica
14.
Front Plant Sci ; 9: 1182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197650

RESUMO

Salinity stress has significant adverse effects on crop productivity and yield. The primary goal of this study was to quantitatively rank salt tolerance in wheat using hyperspectral imaging. Four wheat lines were assayed in a hydroponic system with control and salt treatments (0 and 200 mM NaCl). Hyperspectral images were captured one day after salt application when there were no visual symptoms. Subsequent to necessary preprocessing tasks, two endmembers, each representing one of the treatment, were identified in each image using successive volume maximization. To simplify image analysis and interpretation, similarity of all pixels to the salt endmember was calculated by a technique proposed in this study, referred to as vector-wise similarity measurement. Using this approach allowed high-dimensional hyperspectral images to be reduced to one-dimensional gray-scale images while retaining all relevant information. Two methods were then utilized to analyze the gray-scale images: minimum difference of pair assignments and Bayesian method. The rankings of both methods were similar and consistent with the expected ranking obtained by conventional phenotyping experiments and historical evidence of salt tolerance. This research highlights the application of machine learning in hyperspectral image analysis for phenotyping of plants in a quantitative, interpretable, and non-invasive manner.

15.
Phytopathology ; 108(12): 1443-1454, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29923800

RESUMO

Oat crown rust caused by Puccinia coronata f. sp. avenae is the most destructive foliar disease of cultivated oat. Characterization of genetic factors controlling resistance responses to Puccinia coronata f. sp. avenae in nonhost species could provide new resources for developing disease protection strategies in oat. We examined symptom development and fungal colonization levels of a collection of Brachypodium distachyon and B. hybridum accessions infected with three North American P. coronata f. sp. avenae isolates. Our results demonstrated that colonization phenotypes are dependent on both host and pathogen genotypes, indicating a role for race-specific responses in these interactions. These responses were independent of the accumulation of reactive oxygen species. Expression analysis of several defense-related genes suggested that salicylic acid and ethylene-mediated signaling but not jasmonic acid are components of resistance reaction to P. coronata f. sp. avenae. Our findings provide the basis to conduct a genetic inheritance study to examine whether effector-triggered immunity contributes to nonhost resistance to P. coronata f. sp. avenae in Brachypodium spp.


Assuntos
Avena/microbiologia , Basidiomycota/fisiologia , Brachypodium/genética , Resistência à Doença/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Brachypodium/imunologia , Brachypodium/microbiologia , Loci Gênicos/genética , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Especificidade da Espécie
16.
Nat Commun ; 9(1): 2370, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915302

RESUMO

Meiotic crossovers (COs) are not uniformly distributed across the genome. Factors affecting this phenomenon are not well understood. Although many species exhibit large differences in CO numbers between sexes, sex-specific aspects of CO landscape are particularly poorly elucidated. Here, we conduct high-resolution CO mapping in maize. Our results show that CO numbers as well as their overall distribution are similar in male and female meioses. There are, nevertheless, dissimilarities at local scale. Male and female COs differ in their locations relative to transcription start sites in gene promoters and chromatin marks, including nucleosome occupancy and tri-methylation of lysine 4 of histone H3 (H3K4me3). Our data suggest that sex-specific factors not only affect male-female CO number disparities but also cause fine differences in CO positions. Differences between male and female CO landscapes indicate that recombination has distinct implications for population structure and gene evolution in male and in female meioses.


Assuntos
Troca Genética , Óvulo Vegetal/genética , Pólen/genética , Zea mays/genética , Mapeamento Cromossômico , Regiões Promotoras Genéticas
17.
Protoplasma ; 255(5): 1487-1504, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29651660

RESUMO

Drought tolerance is a complex trait that is governed by multiple genes. The study presents differential transcriptome analysis between drought-tolerant (Triticum aestivum Cv. C306) and drought-sensitive (Triticum aestivum Cv. WL711) genotypes, using Affymetrix GeneChip® Wheat Genome Array. Both genotypes exhibited diverse global transcriptional responses under control and drought conditions. Pathway analysis suggested significant induction or repression of genes involved in secondary metabolism, nucleic acid synthesis, protein synthesis, and transport in C306, as compared to WL711. Significant up- and downregulation of transcripts for enzymes, hormone metabolism, and stress response pathways were observed in C306 under drought. The elevated expression of plasma membrane intrinsic protein 1 and downregulation of late embryogenesis abundant in the leaf tissues could play an important role in delayed wilting in C306. The other regulatory genes such as MT, FT, AP2, SKP1, ABA2, ARF6, WRKY6, AOS, and LOX2 are involved in defense response in C306 genotype. Additionally, transcripts with unknown functions were identified as differentially expressed, which could participate in drought responses.


Assuntos
Secas , Transcriptoma/genética , Triticum/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Triticum/fisiologia
18.
mBio ; 9(1)2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463655

RESUMO

Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae, is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenaeIMPORTANCE Disease management strategies for oat crown rust are challenged by the rapid evolution of Puccinia coronata f. sp. avenae, which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding P. coronata f. sp. avenae, resources to study the molecular mechanisms underpinning pathogenicity and the emergence of new virulence traits are lacking. Such limitations are partly due to the obligate biotrophic lifestyle of P. coronata f. sp. avenae as well as the dikaryotic nature of the genome, features that are also shared with other important rust pathogens. This study reports the first release of a haplotype-phased genome assembly for a dikaryotic fungal species and demonstrates the amenability of using emerging technologies to investigate genetic diversity in populations of P. coronata f. sp. avenae.


Assuntos
Avena/microbiologia , Basidiomycota/classificação , Basidiomycota/genética , Variação Genética , Genótipo , Doenças das Plantas/microbiologia , Basidiomycota/isolamento & purificação , Perfilação da Expressão Gênica , Genoma Fúngico , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único
19.
Theor Appl Genet ; 131(3): 721-733, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29222636

RESUMO

KEY MESSAGE: Oat crown rust is one of the most damaging diseases of oat. We identified a new source of resistance and developed KASP and TaqMan markers for selection in breeding programs. A new highly effective resistance to oat crown rust (Puccinia coronata f. sp. avenae) was identified in the diploid oat Avena strigosa PI 258731 and introgressed into hexaploid cultivated oat. Young plants with this resistance show moderate susceptibility, whereas older plant tissues and adult plants are resistant with no virulent isolates encountered in over 8 years of testing. Resistance was incorporated into hexaploid oat by embryo rescue, colchicine chromosome doubling followed by backcrosses with a hexaploid parent, and selection for stable transmission of resistance. To mitigate flag leaf and panicle chlorosis/necrosis associated with the resistance, crosses were made with derived resistant lines to breeding lines of divergent parentage followed by selection. Subsequently, two F2 sister lines, termed MNBT1020-1 and MNBT1021-1, were identified in which the chlorosis/necrosis was reduced. These two lines performed well in replicated multi-location state trials in 2015 and 2016 out-yielding all cultivar entries. Segregating F2:3 plants resulting from crosses of MNBT lines to susceptible parents were genotyped with the oat 6K SNP array, and SNP loci with close linkage to the resistance were identified. KASP assays generated from linked SNPs showed accurate discrimination of the resistance in derivatives of the resistant MNBT lines crossed to susceptible breeding lines. A TaqMan marker was developed and correctly identified homozygous resistance in over 95% of 379 F4 plants when rust was scored in F4:5 plants in the field. Thus, a novel highly effective resistance and associated molecular markers are available for use in breeding, genetic analysis, and functional studies.


Assuntos
Avena/genética , Resistência à Doença/genética , Marcadores Genéticos , Doenças das Plantas/genética , Avena/microbiologia , Basidiomycota , Cruzamentos Genéticos , Ligação Genética , Genótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Poliploidia
20.
Mol Plant Pathol ; 19(5): 1047-1060, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28846186

RESUMO

Puccinia coronata f. sp. avenae (Pca) causes crown rust disease in cultivated and wild oat (Avena spp.). The significant yield losses inflicted by this pathogen make crown rust the most devastating disease in the oat industry. Pca is a basidiomycete fungus with an obligate biotrophic lifestyle, and is classified as a typical macrocyclic and heteroecious fungus. The asexual phase in the life cycle of Pca occurs in oat, whereas the sexual phase takes place primarily in Rhamnus species as the alternative host. Epidemics of crown rust happens in areas with warm temperatures (20-25 °C) and high humidity. Infection by the pathogen leads to plant lodging and shrivelled grain of poor quality. Disease symptoms: Infection of susceptible oat varieties gives rise to orange-yellow round to oblong uredinia (pustules) containing newly formed urediniospores. Pustules vary in size and can be larger than 5 mm in length. Infection occurs primarily on the surfaces of leaves, although occasional symptoms develop in the oat leaf sheaths and/or floral structures, such as awns. Symptoms in resistant oat varieties vary from flecks to small pustules, typically accompanied by chlorotic halos and/or necrosis. The pycnial and aecial stages are mostly present in the leaves of Rhamnus species, but occasionally symptoms can also be observed in petioles, young stems and floral structures. Aecial structures display a characteristic hypertrophy and can differ in size, occasionally reaching more than 5 mm in diameter. Taxonomy: Pca belongs to the kingdom Fungi, phylum Basidiomycota, class Pucciniomycetes, order Pucciniales and family Pucciniaceae. Host range: Puccinia coronata sensu lato can infect 290 species of grass hosts. Pca is prevalent in all oat-growing regions and, compared with other cereal rusts, displays a broad telial host range. The most common grass hosts of Pca include cultivated hexaploid oat (Avena sativa) and wild relatives, such as bluejoint grass, perennial ryegrass and fescue. Alternative hosts include several species of Rhamnus, with R. cathartica (common buckthorn) as the most important alternative host in Europe and North America. CONTROL: Most crown rust management strategies involve the use of rust-resistant crop varieties and the application of fungicides. The attainment of the durability of resistance against Pca is difficult as it is a highly variable pathogen with a great propensity to overcome the genetic resistance of varieties. Thus, adult plant resistance is often exploited in oat breeding programmes to develop new crown rust-resistant varieties. Useful website: https://www.ars.usda.gov/midwest-area/st-paul-mn/cereal-disease-lab/docs/cereal-rusts/race-surveys/.


Assuntos
Avena/crescimento & desenvolvimento , Avena/microbiologia , Basidiomycota/fisiologia , Basidiomycota/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...