Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400354, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613491

RESUMO

The emerging field of photopharmacology is a promising chemobiological methodology for optical control of drug activities that could ultimately solve the off-target toxicity outside the disease location of many drugs for the treatment of a given pathology. The use of photolytic reactions looks very attractive for a light-activated drug release but requires to develop photolytic reactions sensitive to red or near-infrared light excitation for better tissue penetration. This review will present the concepts of triplet-triplet annihilation upconversion-based photolysis and their recent in vivo applications for light-induced drug delivery using photoactivatable nanoparticles.

2.
J Pept Sci ; : e3597, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523558

RESUMO

The recently developed mRNA-based coronavirus SARS-CoV-2 vaccines highlighted the great therapeutic potential of the mRNA technology. Although the lipid nanoparticles used for the delivery of the mRNA are very efficient, they showed, in some cases, the induction of side effects as well as the production of antibodies directed against particle components. Thus, the development of alternative delivery systems is of great interest in the pursuit of more effective mRNA treatments. In the present work, we evaluated the mRNA transfection capacities of a series of cationic histidine-rich amphipathic peptides derived from LAH4. We found that while the LAH4-A1 peptide was an efficient carrier for mRNA, its activity was highly serum sensitive. Interestingly, modification of this cell penetrating peptide at the N-terminus with two tyrosines or with salicylic acid allowed to confer serum resistance to the carrier.

3.
Macromol Biosci ; : e2300492, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38414380

RESUMO

The physiological problem of chronic inflammation and its associated pathologies attract ongoing attention with regard to methods for their control. Current systemic pharmacological treatments present problematic side effects. Thus, the possibility of new anti-inflammatory compounds with differing mechanisms of action or biophysical properties is enticing. Cationic polymers, with their ability to act as carriers for other molecules or to form bio-compatible materials, present one such possibility. Although not well described, several polycations such as chitosan and polyarginine, have displayed anti-inflammatory properties. The present work shows the ubiquitous laboratory transfection reagent, polyethylenimine (PEI) and more specifically low molecular weight branched PEI (B-PEI) as also possessing such properties. Using a RAW264.7 murine cell line macrophage as an inflammation model, it is found the B-PEI 700 Da as being capable of reducing the production of several pro-inflammatory molecules induced by the endotoxin lipopolysaccharide. Although further studies are required for elucidation of its mechanisms, the revelation that such a common lab reagent may present these effects has wide-ranging implications, as well as an abundance of possibilities.

4.
Bioconjug Chem ; 34(7): 1304-1315, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37392184

RESUMO

Liposome-based nanoparticles able to release, via a photolytic reaction, a payload anchored at the surface of the phospholipid bilayer were prepared. The liposome formulation strategy uses an original drug-conjugated blue light-sensitive photoactivatable coumarinyl linker. This is based on an efficient blue light-sensitive photolabile protecting group modified by a lipid anchor, which enables its incorporation into liposomes, leading to blue to green light-sensitive nanoparticles. In addition, the formulated liposomes were doped with triplet-triplet annihilation upconverting organic chromophores (red to blue light) in order to prepare red light sensitive liposomes able to release a payload, by upconversion-assisted photolysis. Those light-activatable liposomes were used to demonstrate that direct blue or green light photolysis or red light TTA-UC-assisted drug photolysis can effectively photorelease a drug payload (Melphalan) and kill tumor cells in vitro after photoactivation.


Assuntos
Lipossomos , Melfalan , Liberação Controlada de Fármacos , Fosfolipídeos , Fotólise
5.
Pharmaceutics ; 15(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37376091

RESUMO

Despite their clinical success, Antibody-Drug Conjugates (ADCs) are still limited to the delivery of a handful of cytotoxic small-molecule payloads. Adaptation of this successful format to the delivery of alternative types of cytotoxic payloads is of high interest in the search for novel anticancer treatments. Herein, we considered that the inherent toxicity of cationic nanoparticles (cNP), which limits their use as oligonucleotide delivery systems, could be turned into an opportunity to access a new family of toxic payloads. We complexed anti-HER2 antibody-oligonucleotide conjugates (AOC) with cytotoxic cationic polydiacetylenic micelles to obtain Antibody-Toxic-Nanoparticles Conjugates (ATNPs) and studied their physicochemical properties, as well as their bioactivity in both in vitro and in vivo HER2 models. After optimising their AOC/cNP ratio, the small (73 nm) HER2-targeting ATNPs were found to selectively kill antigen-positive SKBR-2 cells over antigen-negative MDA-MB-231 cells in serum-containing medium. Further in vivo anti-cancer activity was demonstrated in an SKBR-3 tumour xenograft model in BALB/c mice in which stable 60% tumour regression could be observed just after two injections of 45 pmol of ATNP. These results open interesting prospects in the use of such cationic nanoparticles as payloads for ADC-like strategies.

6.
Int J Pharm ; 641: 123071, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37244463

RESUMO

A growing body of experimental and clinical evidence suggests that rare cell populations, known as cancer stem cells (CSCs), play an important role in the development and therapeutic resistance of several cancers, including glioblastoma. Elimination of these cells is therefore of paramount importance. Interestingly, recent results have shown that the use of drugs that specifically disrupt mitochondria or induce mitochondria-dependent apoptosis can efficiently kill cancer stem cells. In this context, a novel series of platinum(II) complexes bearing N-heterocyclic carbene (NHC) of the type [(NHC)PtI2(L)] modified with the mitochondria targeting group triphenylphosphonium were synthesized. After a complete characterization of the platinum complexes, the cytotoxicity against two different cancer cell lines, including a cancer stem cell line, was investigated. The best compound reduced the cell viability of both cell lines by 50% in the low µM range, with an approximately 300-fold higher anticancer activity on the CSC line compared to oxaliplatin. Finally, mechanistic studies showed that the triphenylphosphonium functionalized platinum complexes significantly altered mitochondrial function and also induced atypical cell death.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Platina/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Morte Celular
7.
Methods Mol Biol ; 2622: 173-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781760

RESUMO

Click chemistry, and particularly azide-alkyne cycloaddition, represents one of the principal bioconjugation strategies that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor. Excellent coupling yields were obtained in the presence of bathophenanthrolinedisulphonate, a water-soluble copper-ion chelator, acting as catalyst. No vesicle leakage was triggered by this conjugation reaction, and the coupled mannose ligands were exposed at the surface of the liposomes. The major limitation of Cu(I)-catalyzed click reactions is that this type of conjugation is restricted to liposomes made of saturated (phospho)lipids. To circumvent this constraint, an example of alternate copper-free azide-alkyne click reaction has been developed, and it was applied to the anchoring of a biotin moiety that was fully functional and could be therefore quantified. Molecular tools and results are presented here.


Assuntos
Química Click , Lipossomos , Lipossomos/química , Química Click/métodos , Azidas/química , Catálise , Alcinos/química , Ligantes , Reação de Cicloadição
8.
Adv Healthc Mater ; 12(2): e2201474, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36222265

RESUMO

Photolytic reactions allow the optical control of the liberation of biological effectors by photolabile protecting groups. The development of versatile technologies enabling the use of deep-red or NIR light excitation still represents a challenging issue, in particular for light-induced drug release (e.g., light-induced prodrug activation). Here, light-sensitive biocompatible lipid nanocapsules able to liberate an antitumoral drug through photolysis are presented. It is demonstrated that original photon upconverting nanoparticles (LNC-UCs) chemically conjugated to a coumarin-based photocleavable linker can quantitatively and efficiently release a drug by upconversion luminescence-assisted photolysis using a deep-red excitation wavelength. In addition, it is also able to demonstrate that such nanoparticles are stable in the dark, without any drug leakage in the absence of light. These findings open new avenues to specifically liberate diverse drugs using deep-red or NIR excitations for future therapeutic applications in nanomedicine.


Assuntos
Nanocápsulas , Nanopartículas , Pró-Fármacos , Pró-Fármacos/farmacologia , Preparações de Ação Retardada/farmacologia , Cumarínicos
9.
Cancers (Basel) ; 14(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291841

RESUMO

The difficulty involved in the treatment of many tumours due to their recurrence and resistance to chemotherapy is tightly linked to the presence of cancer stem cells (CSCs). This CSC sub-population is distinct from the majority of cancer cells of the tumour bulk. Indeed, CSCs have increased mitochondrial mass that has been linked to increased sensitivity to mitochondrial targeting compounds. Thus, a platinum-based polyethylenimine (PEI) polymer-drug conjugate (PDC) was assessed as a potential anti-CSC therapeutic since it has previously displayed mitochondrial accumulation. Our results show that CSCs have increased specific sensitivity to the PEI carrier and to the PDC. The mechanism of cell death seems to be necrotic in nature, with an absence of apoptotic markers. Cell death is accompanied by the induction of a protective autophagy. The interference in the balance of this pathway, which is highly important for CSCs, may be responsible for a partial reversion of the stem-like phenotype observed with prolonged PEI and PDC treatment. Several markers also indicate the cell death mode to be capable of inducing an anti-cancer immune response. This study thus indicates the potential therapeutic perspectives of polycations against CSCs.

10.
Chem Biol Interact ; 367: 110167, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36087816

RESUMO

Cancer stem cells (CSCs) represent a difficult to treat cellular niche within tumours due to their unique characteristics, which give them a high propensity for resistance to classical anti-cancer treatments and the ability to repopulate the tumour mass. An attribute that may be implicated in the high rates of recurrence of certain tumours. However, other characteristics specific to these cells, such as their high dependence on mitochondria, may be exploited for the development of new therapeutic agents that are effective against the niche. As such, a previously described phosphorescent N-heterocyclic carbene iridium(III) compound which showed a high level of cytotoxicity against classical tumour cell lines with mitochondria-specific effects was studied for its potential against CSCs. The results showed a significantly higher level of activity against several CSC lines compared to non-CSCs. Mitochondrial localisation and superoxide production were confirmed. Although the cell death involved caspase activation, their role in cell death was not definitive, with a potential implication of other, non-apoptotic pathways shown. A cytostatic effect of the compound was also displayed at low mortality doses. This study thus provides important insights into the mechanisms and the potential for this class of molecule in the domain of anti-CSC therapeutics.


Assuntos
Antineoplásicos , Citostáticos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Caspases/metabolismo , Citostáticos/farmacologia , Irídio/metabolismo , Irídio/farmacologia , Metano/análogos & derivados , Células-Tronco Neoplásicas/metabolismo , Superóxidos/metabolismo
11.
Biomaterials ; 286: 121570, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35576809

RESUMO

The mRNA vaccine technology has promising applications to fight infectious diseases as demonstrated by the licensing of two mRNA-based vaccines, Comirnaty® (Pfizer/BioNtech) and Spikevax® (Moderna), in the context of the Covid-19 crisis. Safe and effective delivery systems are essential to the performance of these vaccines and lipid nanoparticles (LNPs) able to entrap, protect and deliver the mRNA in vivo are considered by many as the current "best in class". Nevertheless, current mRNA/LNP vaccine technology has still some limitations, one of them being thermostability, as evidenced by the ultracold distribution chain required for the licensed vaccines. We found that the thermostability of mRNA/LNP, could be improved by a novel imidazole modified lipid, DOG-IM4, in combination with standard helper lipids. DOG-IM4 comprises an ionizable head group consisting of imidazole, a dioleoyl lipid tail and a short flexible polyoxyethylene spacer between the head and tail. Here we describe the synthesis of DOG-IM4 and show that DOG-IM4 LNPs confer strong immunization properties to influenza HA mRNA in mice and macaques and a remarkable stability to the encapsulated mRNA when stored liquid in phosphate buffered saline at 4 °C. We speculate the increased stability to result from some specific attributes of the lipid's imidazole head group.


Assuntos
COVID-19 , Nanopartículas , Animais , COVID-19/prevenção & controle , Imidazóis , Imunização , Lipídeos , Lipossomos , Camundongos , Primatas/genética , RNA Mensageiro/genética , Vacinas Sintéticas , Vacinas de mRNA
12.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268850

RESUMO

There is an urgent need to develop new therapeutic strategies to fight the emergence of multidrug resistant bacteria. Many antimicrobial peptides (AMPs) have been identified and characterized, but clinical translation has been limited partly due to their structural instability and degradability in physiological environments. The use of unnatural backbones leading to foldamers can generate peptidomimetics with improved properties and conformational stability. We recently reported the successful design of urea-based eukaryotic cell-penetrating foldamers (CPFs). Since cell-penetrating peptides and AMPs generally share many common features, we prepared new sequences derived from CPFs by varying the distribution of histidine- and arginine-type residues at the surface of the oligourea helix, and evaluated their activity on both Gram-positive and Gram-negative bacteria as well as on fungi. In addition, we prepared and tested new amphiphilic block cofoldamers consisting of an oligourea and a peptide segment whereby polar and charged residues are located in the peptide segment and more hydrophobic residues in the oligourea segment. Several foldamer sequences were found to display potent antibacterial activities even in the presence of 50% serum. Importantly, we show that these urea-based foldamers also possess promising antifungal properties.


Assuntos
Antifúngicos
13.
Macromol Biosci ; 22(6): e2200043, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35332672

RESUMO

Implantation of biomedical devices is followed by immune response to the implant, as well as occasionally bacterial, yeast, and/or fungal infections. In this context, new implant materials and coatings that deal with medical device-associated complications are required. Antibacterial and anti-inflammatory materials are also required for wound healing applications, especially in diabetic patients with chronic wounds. In this work, hyaluronic acid (HA) hydrogels with triple activity: antimicrobial, immunomodulatory, and miRNA delivery agent, are presented. It is demonstrated that polyarginine with a degree of polymerization of 30 (PAR30), which is previously shown to have a prolonged antibacterial activity, decreases inflammatory response of lipopolysaccharide-stimulated macrophages. In addition, PAR30 accelerates fibroblast migration in macrophage/fibroblast coculture system, suggesting a positive effect on wound healing. Furthermore, PAR30 allows to load miRNA into HA hydrogels, and then to deliver them into the cells. To the authors knowledge, this study is the first describing miRNA-loaded hydrogels with antibacterial effect and anti-inflammatory features. Such system can become a tool for the treatment of infected wounds, e.g., diabetic ulcers, as well as for foreign body response modulation.


Assuntos
Anti-Infecciosos , MicroRNAs , Antibacterianos/farmacologia , Anti-Inflamatórios , Humanos , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Imunidade , MicroRNAs/genética , Peptídeos
14.
J Gene Med ; 24(3): e3401, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34856643

RESUMO

BACKGROUND: Delivery systems, including peptide-based ones, that destabilize endosomes in a pH-dependent manner are increasingly used to deliver cargoes of therapeutic interest, such as nucleic acids and proteins into mammalian cells. METHODS: The negatively charged amphipathic alpha-helicoidal forming peptide named HELP (Helical Erythrocyte Lysing Peptide) is a derivative from the bee venom melittin and was shown to have a pH-dependent activity with the highest lytic activity at pH 5.0 at the same time as becoming inactive when the pH is increased. The present study aimed to determine whether replacement in the HELP peptide of the glutamic acid residues by histidines, for which the protonation state is sensitive to the pH changes that occur during endosomal acidification, can transform this fusogenic peptide into a carrier able to deliver different nucleic acids into mammalian cells. RESULTS: The resulting HELP-4H peptide displays high plasmid DNA, small interfering RNA and mRNA delivery capabilities. Importantly, in contrast to other cationic peptides, its transfection activity was only marginally affected by the presence of serum. Using circular dichroism, we found that acidic pH did not induce significant conformational changes for HELP-4H. CONCLUSIONS: In summary, we were able to develop a new cationic histidine rich peptide able to efficiently deliver various nucleic acids into cells.


Assuntos
Peptídeos Penetradores de Células , Animais , Cátions , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , DNA/genética , Histidina/genética , Concentração de Íons de Hidrogênio , Mamíferos/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Transfecção
15.
J Funct Biomater ; 14(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36662064

RESUMO

Cationic polymers such as polyethylenimine (PEI) have found a pervasive place in laboratories across the world as gene delivery agents. However, their applications are not limited to this role, having found a place as delivery agents for drugs, in complexes known as polymer-drug conjugates (PDCs). Yet a potentially underexplored domain of research is in their inherent potential as anti-cancer therapeutic agents, which has been indicated by several studies. Even more interesting is the recent observation that certain polycations may present a significantly greater toxicity towards the clinically important cancer stem cell (CSC) niche than towards more differentiated bulk tumour cells. These cells, which possess the stem-like characteristics of self-renewal and differentiation, are highly implicated in cancer drug resistance, tumour recurrence and poor clinical prognosis. The search for compounds which may target and eliminate these cells is thus of great research interest. As such, the observation in our previous study on a PEI-based PDC which showed a considerably higher toxicity of PEI towards glioblastoma CSCs (GSCs) than on more differentiated glioma (U87) cells led us to investigate other cationic polymers for a similar effect. The evaluation of the toxicity of a range of different types of polycations, and an investigation into the potential source of GSC's sensitivity to such compounds is thus described.

16.
Toxins (Basel) ; 13(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065185

RESUMO

The protein transduction and antimicrobial activities of histidine-rich designer peptides were investigated as a function of their sequence and compared to gene transfection, lentivirus transduction and calcein release activities. In membrane environments, the peptides adopt helical conformations where the positioning of the histidine side chains defines a hydrophilic angle when viewed as helical wheel. The transfection of DNA correlates with calcein release in biophysical experiments, being best for small hydrophilic angles supporting a model where lysis of the endosomal membrane is the limiting factor. In contrast, antimicrobial activities show an inverse correlation suggesting that other interactions and mechanisms dominate within the bacterial system. Furthermore, other derivatives control the lentiviral transduction enhancement or the transport of proteins into the cells. Here, we tested the transport into human cell lines of luciferase (63 kDa) and the ribosome-inactivating toxin saporin (30 kDa). Notably, depending on the protein, different peptide sequences are required for the best results, suggesting that the interactions are manifold and complex. As such, designed LAH4 peptides assure a large panel of biological and biophysical activities whereby the optimal result can be tuned by the physico-chemical properties of the sequences.


Assuntos
Anti-Infecciosos/farmacologia , Histidina/química , Peptídeos/farmacologia , Transporte Proteico/efeitos dos fármacos , Anti-Infecciosos/química , Linhagem Celular Tumoral , Desenho de Fármacos , Fluoresceínas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Luciferases/metabolismo , Peptídeos/química , Saporinas/metabolismo
17.
Chem Commun (Camb) ; 57(12): 1458-1461, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33438700

RESUMO

Cell-penetrating foldamers (CPFs) have recently shown promise as efficient and safe nucleic acid delivery systems. However, the application of CPFs to siRNA transport remains scarce. Here, we report helical CPFs tailored with specific end-groups (pyridylthio- or n-octyl-ureas) as effective molecular systems in combination with helper lipids to intracellularly deliver biologically-relevant siRNA.


Assuntos
Peptídeos Penetradores de Células/química , RNA Interferente Pequeno , Ureia/química , Células A549 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular , Sistemas de Liberação de Medicamentos , Regulação Enzimológica da Expressão Gênica , Humanos , Conformação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Quinase 1 Polo-Like
18.
J Phys Chem B ; 124(22): 4476-4486, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32390425

RESUMO

The biophysical properties of a designed bioreducible oligourea foldamer, which shows excellent transfection activities in its dimeric form are presented. Binding isotherms of the monomer as well as of the dimer to both DNA and lipid membranes were determined by indole fluorescence. Comparing the monomer with the dimer allows both a precise biophysical characterization of the role of dimerization and characterization of how the covalent linkage between two monomers affects the transfection activity. The results indicate that dimerization results in pronounced changes in the thermodynamics of different steps of the transfection process, which extend well beyond simple steric effects within the dimer. A model emerges where the imidazole-containing polymers compact DNA at neutral pH, but they liberate the polyurea from the DNA complex at low pH, thus being able to rupture acidified endosomes. Indeed, the dimerization inverts the pH dependence of the binding affinities toward the requirements suggested by this model for efficient transfection.


Assuntos
DNA , Polímeros , Dimerização , Concentração de Íons de Hidrogênio , Termodinâmica
19.
Biochim Biophys Acta Biomembr ; 1862(8): 183212, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057757

RESUMO

The LAH4 family of amphipathic peptides exhibits pronounced antimicrobial, cell penetrating and nucleic acid transfection activities. Furthermore, variants were designed with potent lentiviral transduction enhancement. When viewed along a helical wheel the four histidines are arranged to form an amphipathic structure. In order to optimize some of these biological activities the number of leucine and alanine residues exposed to the hydrophilic surface was systematically varied which resulted in the design of vectofusin a peptide with strong lentiviral transduction enhancement activities. Here the series of peptides with varying numbers of alanine or leucine residues, respectively, framed by the histidines was tested for their calcein release activity. Interestingly, the membrane pore formation and DNA transfection activities show a clear correlation with the hydrophilic angle. In contrast the membrane partitioning and the propensity to adopt helical conformations was hardly affected as long as the hydrophilic angle did not exceed a limiting value of 150°.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , DNA/genética , Histidina/genética , Membranas/efeitos dos fármacos , Alanina/genética , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/farmacologia , DNA/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Lentivirus/genética , Leucina/genética , Membranas/metabolismo , Porosidade , Transfecção
20.
Biochim Biophys Acta Biomembr ; 1862(2): 183149, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816324

RESUMO

Viral protein R (Vpr) is a small accessory protein of 96 amino acids that is present in Human and simian immunodeficiency viruses. Among the very different properties that Vpr possesses we can find cell penetrating capabilities. Based on this and on its capacity to interact with nucleic acids we previously investigated the DNA transfection properties of Vpr and subfragments thereof. We found that fragments of the C-terminal helical domain of Vpr are able to deliver efficiently plasmid DNA into different cell lines. As the amphipathic helix may play a role in the interactions with membranes, we investigated whether insertion of a proline residue in the α-helix modifies the transfection properties of Vpr. Unexpectedly, we found that the resulting Vpr55-82 Pro70 peptide was even more efficient than wild type Vpr55-82 in the gene delivery assays. Using circular dichroism, light scattering and solid-state NMR techniques, we characterized the secondary structure and interactions of Vpr and several mutants with model membranes. A model is proposed where the proline shifts the dissociation equilibrium of the peptide-cargo complex and thereby its endosomal release.


Assuntos
Peptídeos Penetradores de Células/química , Técnicas de Transferência de Genes , Bicamadas Lipídicas/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Substituição de Aminoácidos , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/metabolismo , Células HEK293 , HIV-1/química , Humanos , Isoleucina/química , Isoleucina/genética , Prolina/química , Prolina/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...