Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(14): 6973-6983, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38353333

RESUMO

Scalable approaches for synthesis and integration of proton selective atomically thin 2D materials with proton conducting polymers can enable next-generation proton exchange membranes (PEMs) with minimal crossover of reactants or undesired species while maintaining adequately high proton conductance for practical applications. Here, we systematically investigate facile and scalable approaches to interface monolayer graphene synthesized via scalable chemical vapor deposition (CVD) on Cu foil with the most widely used proton exchange polymer Nafion 211 (N211, ∼25 µm thick film) via (i) spin-coating a ∼700 nm thin Nafion carrier layer to transfer graphene (spin + scoop), (ii) casting a Nafion film and cold pressing (cold press), and (iii) hot pressing (hot press) while minimizing micron-scale defects to <0.3% area. Interfacing CVD graphene on Cu with N211 via cold press or hot press and subsequent removal of Cu via etching results in ∼50% lower areal proton conductance compared to membranes fabricated via the spin + scoop method. Notably, the areal proton conductance can be recovered by soaking the hot and cold press membranes in 0.1 M HCl, without significant damage to graphene. We rationalize our finding by the significantly smaller reservoir for cation uptake from Cu etching for the ∼700 nm thin carrier Nafion layer used for spin + scoop transfer compared to the ∼25 µm thick N211 film for hot and cold pressing. Finally, we demonstrate performance in H2 fuel cells with power densities of ∼0.23 W cm-2 and up to ∼41-54% reduction in H2 crossover for the N211|G|N211 sandwich membranes compared to the control N211|N211 indicating potential for our approach in enabling advanced PEMs for fuel cells, redox-flow batteries, isotope separations and beyond.

2.
Nat Commun ; 14(1): 525, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720867

RESUMO

The broad employment of water electrolysis for hydrogen (H2) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu3Ag7 electrocatalyst. Such a strategy not only produces more valuable anodic product than O2 but also releases H2 at the anode with a small voltage input. Density functional theory studies indicate the H2C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu3Ag7 than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu3Ag7(+)||Ni3N/Ni(-) can produce H2 at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm2 with a cell voltage of only 0.60 V.

3.
Nano Lett ; 23(1): 34-41, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36535029

RESUMO

2D materials offer the ability to expose their electronic structure to manipulations by a proximity effect. This could be harnessed to craft properties of 2D interfaces and van der Waals heterostructures in devices and quantum materials. We explore the possibility to create an artificial spin polarized electrode from graphene through proximity interaction with a ferromagnetic insulator to be used in a magnetic tunnel junction (MTJ). Ferromagnetic insulator/graphene artificial electrodes were fabricated and integrated in MTJs based on spin analyzers. Evidence of the emergence of spin polarization in proximitized graphene layers was observed through the occurrence of tunnel magnetoresistance. We deduced a spin dependent splitting of graphene's Dirac band structure (∼15 meV) induced by the proximity effect, potentially leading to full spin polarization and opening the way to gating. The extracted spin signals illustrate the potential of 2D quantum materials based on proximity effects to craft spintronics functionalities, from vertical MTJs memory cells to logic circuits.

4.
Adv Mater ; 35(6): e2207374, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36329667

RESUMO

Hexagonal boron nitride (h-BN) is a layered inorganic synthetic crystal exhibiting high temperature stability and high thermal conductivity. As a ceramic material it has been widely used for thermal management, heat shielding, lubrication, and as a filler material for structural composites. Recent scientific advances in isolating atomically thin monolayers from layered van der Waals crystals to study their unique properties has propelled research interest in mono/few layered h-BN as a wide bandgap insulating support for nanoscale electronics, tunnel barriers, communications, neutron detectors, optics, sensing, novel separations, quantum emission from defects, among others. Realizing these futuristic applications hinges on scalable cost-effective high-quality h-BN synthesis. Here, the authors review scalable approaches of high-quality mono/multilayer h-BN synthesis, discuss the challenges and opportunities for each method, and contextualize their relevance to emerging applications. Maintaining a stoichiometric balance B:N = 1 as the atoms incorporate into the growing layered crystal and maintaining stacking order between layers during multi-layer synthesis emerge as some of the main challenges for h-BN synthesis and the development of processes to address these aspects can inform and guide the synthesis of other layered materials with more than one constituent element. Finally, the authors contextualize h-BN synthesis efforts along with quality requirements for emerging applications via a technological roadmap.

5.
Nat Commun ; 13(1): 6709, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344569

RESUMO

The transport of water through nanoscale capillaries/pores plays a prominent role in biology, ionic/molecular separations, water treatment and protective applications. However, the mechanisms of water and vapor transport through nanoscale confinements remain to be fully understood. Angstrom-scale pores (~2.8-6.6 Å) introduced into the atomically thin graphene lattice represent ideal model systems to probe water transport at the molecular-length scale with short pores (aspect ratio ~1-1.9) i.e., pore diameters approach the pore length (~3.4 Å) at the theoretical limit of material thickness. Here, we report on orders of magnitude differences (~80×) between transport of water vapor (~44.2-52.4 g m-2 day-1 Pa-1) and liquid water (0.6-2 g m-2 day-1 Pa-1) through nanopores (~2.8-6.6 Å in diameter) in monolayer graphene and rationalize this difference via a flow resistance model in which liquid water permeation occurs near the continuum regime whereas water vapor transport occurs in the free molecular flow regime. We demonstrate centimeter-scale atomically thin graphene membranes with up to an order of magnitude higher water vapor transport rate (~5.4-6.1 × 104 g m-2 day-1) than most commercially available ultra-breathable protective materials while effectively blocking even sub-nanometer (>0.66 nm) model ions/molecules.


Assuntos
Grafite , Nanoporos , Vapor , Gases , Membranas , Íons
6.
ACS Nano ; 16(10): 16003-16018, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36201748

RESUMO

Angstrom-scale pores introduced into atomically thin 2D materials offer transformative advances for proton exchange membranes in several energy applications. Here, we show that facile kinetic control of scalable chemical vapor deposition (CVD) can allow for direct formation of angstrom-scale proton-selective pores in monolayer graphene with significant hindrance to even small, hydrated ions (K+ diameter ∼6.6 Å) and gas molecules (H2 kinetic diameter ∼2.9 Å). We demonstrate centimeter-scale Nafion|Graphene|Nafion membranes with proton conductance ∼3.3-3.8 S cm-2 (graphene ∼12.7-24.6 S cm-2) and H+/K+ selectivity ∼6.2-44.2 with liquid electrolytes. The same membranes show proton conductance ∼4.6-4.8 S cm-2 (graphene ∼39.9-57.5 S cm-2) and extremely low H2 crossover ∼1.7 × 10-1 - 2.2 × 10-1 mA cm-2 (∼0.4 V, ∼25 °C) with H2 gas feed. We rationalize our findings via a resistance-based transport model and introduce a stacking approach that leverages combinatorial effects of interdefect distance and interlayer transport to allow for Nafion|Graphene|Graphene|Nafion membranes with H+/K+ selectivity ∼86.1 (at 1 M) and record low H2 crossover current density ∼2.5 × 10-2 mA cm-2, up to ∼90% lower than state-of-the-art ionomer Nafion membranes ∼2.7 × 10-1 mA cm-2 under identical conditions, while still maintaining proton conductance ∼4.2 S cm-2 (graphene stack ∼20.8 S cm-2) comparable to that for Nafion of ∼5.2 S cm-2. Our experimental insights enable functional atomically thin high flux proton exchange membranes with minimal crossover.

7.
ACS Appl Mater Interfaces ; 14(36): 41328-41336, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36036893

RESUMO

Filtering nanoparticulate aerosols from air streams is important for a wide range of personal protection equipment (PPE), including masks used for medical research, healthcare, law enforcement, first responders, and military applications. Conventional PPEs capable of filtering nanoparticles <300 nm are typically bulky and sacrifice breathability to maximize protection from exposure to harmful nanoparticulate aerosols including viruses ∼20-300 nm from air streams. Here, we show that nanopores introduced into centimeter-scale monolayer graphene supported on polycarbonate track-etched supports via a facile oxygen plasma etch can allow for filtration of aerosolized SiO2 nanoparticles of ∼5-20 nm from air steams while maintaining air permeance of ∼2.28-7.1 × 10-5 mol m-2 s-1 Pa-1. Furthermore, a systematic increase in oxygen plasma etch time allows for a tunable size-selective filtration of aerosolized nanoparticles. We demonstrate a new route to realize ultra-compact, lightweight, and conformal form-factor filters capable of blocking sub-20 nm aerosolized nanoparticles with particular relevance for biological/viral threat mitigation.

8.
Science ; 374(6568): eabd7687, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735245

RESUMO

Atomically thin two-dimensional materials present opportunities for selective transport of subatomic species. The pristine lattice of monolayer graphene and hexagonal boron nitride, although impermeable to helium atoms, allows for transmission of electrons and permits transport of thermal protons and its isotopes. We discuss advances in selective subatomic species transport through atomically thin membranes and their potential for transformative advances in energy storage and conversion, isotope separations, in situ electron microscopy and spectroscopy, and future electronic applications. We outline technological challenges and opportunities for these applications and discuss early adoption in imaging and spectroscopy that are starting to become commercially available, as well as emerging applications in the nuclear industry and future application potential in grid storage, clean/green transportation, environmental remediation, and others.

9.
Nat Commun ; 12(1): 4307, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262029

RESUMO

It is challenging for conventional top-down lithography to fabricate reproducible devices very close to atomic dimensions, whereas identical molecules and very similar nanoparticles can be made bottom-up in large quantities, and can be self-assembled on surfaces. The challenge is to fabricate electrical contacts to many such small objects at the same time, so that nanocrystals and molecules can be incorporated into conventional integrated circuits. Here, we report a scalable method for contacting a self-assembled monolayer of nanoparticles with a single layer of graphene. This produces single-electron effects, in the form of a Coulomb staircase, with a yield of 87 ± 13% in device areas ranging from < 800 nm2 to 16 µm2, containing up to 650,000 nanoparticles. Our technique offers scalable assembly of ultra-high densities of functional particles or molecules that could be used in electronic integrated circuits, as memories, switches, sensors or thermoelectric generators.

10.
Nanoscale ; 13(5): 2825-2837, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33508042

RESUMO

Scalable graphene synthesis and facile large-area membrane fabrication are imperative to advance nanoporous atomically thin membranes (NATMs) for molecular separations. Although chemical vapor deposition (CVD) allows for roll-to-roll high-quality monolayer graphene synthesis, facile transfer with atomically clean interfaces to porous supports for large-area NATM fabrication remains extremely challenging. Sacrificial polymer scaffolds commonly used for graphene transfer typically leave polymer residues detrimental to membrane performance and transfers without polymer scaffolds suffer from low yield resulting in high non-selective leakage through NATMs. Here, we systematically study the factors influencing graphene NATM fabrication and report on a novel roll-to-roll manufacturing compatible isopropanol-assisted hot lamination (IHL) process that enables scalable, facile and clean transfer of CVD graphene on to polycarbonate track etched (PCTE) supports with coverage ≥99.2%, while preserving support integrity/porosity. We demonstrate fully functional centimeter-scale graphene NATMs that show record high permeances (∼2-3 orders of magnitude higher) and better selectivity than commercially available state-of-the-art polymeric dialysis membranes, specifically in the 0-1000 Da range. Our work highlights a scalable approach to fabricate graphene NATMs for practical applications and is fully compatible with roll-to-roll manufacturing processes.

11.
Nano Lett ; 20(8): 5951-5959, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32628858

RESUMO

Atomically thin graphene with a high-density of precise subnanometer pores represents the ideal membrane for ionic and molecular separations. However, a single large-nanopore can severely compromise membrane performance and differential etching between pre-existing defects/grain boundaries in graphene and pristine regions presents fundamental limitations. Here, we show for the first time that size-selective interfacial polymerization after high-density nanopore formation in graphene not only seals larger defects (>0.5 nm) and macroscopic tears but also successfully preserves the smaller subnanometer pores. Low-temperature growth followed by mild UV/ozone oxidation allows for facile and scalable formation of high-density (4-5.5 × 1012 cm-2) useful subnanometer pores in the graphene lattice. We demonstrate scalable synthesis of fully functional centimeter-scale nanoporous atomically thin membranes (NATMs) with water (∼0.28 nm) permeance ∼23× higher than commercially available membranes and excellent rejection to salt ions (∼0.66 nm, >97% rejection) as well as small organic molecules (∼0.7-1.5 nm, ∼100% rejection) under forward osmosis.

12.
ACS Appl Mater Interfaces ; 12(13): 15844-15854, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32134627

RESUMO

Layered two-dimensional (2D) black phosphorus (BP) exhibits novel semiconducting properties including a tunable bandgap and high electron mobility. However, the poor stability of BP in ambient environment severely limits potential for application in future electronic and optoelectronic devices. While passivation or encapsulation of BP using inert materials/polymers has emerged as a plausible solution, a detailed fundamental understanding of BP's reaction with oxygen is imperative to rationally advance its use in applications. Here, we use in situ environmental transmission electron microscopy to elucidate atomistic structural changes in mechanically exfoliated few-layered BP during exposure to varying partial pressures of oxygen. An amorphous oxide layer is seen on the actively etching BP edges, and the thickness of this layer increases with increasing oxygen partial pressure, indicating that oxidation proceeds via initial formation of amorphous PxOy species which sublime to result in the etching of the BP crystal. We observe that while few-layered BP is stable under the 80 kV electron beam (e-beam) in vacuum, the lattice oxidizes and degrades at room temperature in the presence of oxygen only in the region under the e-beam. The oxidative etch rate also increases with increasing e-beam dosage, suggesting the presence of an energy barrier for the oxidation reaction. Preferential oxidative etching along the [0 0 1] and [0 0 1] crystallographic directions is observed, in good agreement with density functional theory calculations showing favorable thermodynamic stability of the oxidized BP (0 0 1) planes compared to the (1 0 0) planes. We expect the atomistic insights and fundamental understanding obtained here to aid in the development of novel approaches to integrate BP in future applications.

13.
ACS Nano ; 13(8): 8736-8748, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31329425

RESUMO

Limited understanding of the factors influencing the yield of carbon nanotubes (CNTs) relative to the number of catalyst particles remains an important barrier to their large-scale production with high quality, and to tailoring CNT properties for applications. This lack of understanding is evident in the frequent use of Edisonian approaches to give high-yield CNT growth, and in the sometimes-confusing influence of trace residues on the reactor walls. In order to create conditions wherein CNT yield is reproducible and to enable large-scale and reliable CNT synthesis, it is imperative to understand-fundamentally-how these common practices impact catalytic activity and thus CNT number density. Herein, we use ambient pressure-X-ray photoelectron spectroscopy (AP-XPS) to reveal the influence of carbon and hydrogen on the coupling between catalyst reduction and CNT nucleation, from an iron catalyst film. We observe a positive correlation between the degree of catalyst reduction and the density of vertically aligned CNTs (forests), verifying that effective catalyst reduction is critical to CNT nucleation and to the resulting CNT growth yield. We demonstrate that the extent of catalyst reduction is the reason for low CNT number density and for lack of self-organization, lift-off, and growth of CNT forests. We also show that hydrocarbon byproducts from consecutive growths can facilitate catalyst reduction and increase CNT number density significantly. These findings suggest that common practices used in the field-such as reactor preconditioning-aid in the reduction of the catalyst population, thus improving CNT number density and enabling the growth of dense forests. Our results also motivate future work using AP-XPS and complementary metrology tools to optimize CNT growth conditions according to the catalyst chemical state.

14.
Adv Mater ; 30(49): e1804977, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368941

RESUMO

Direct synthesis of graphene with well-defined nanoscale pores over large areas can transform the fabrication of nanoporous atomically thin membranes (NATMs) and greatly enhance their potential for practical applications. However, scalable bottom-up synthesis of continuous sheets of nanoporous graphene that maintain integrity over large areas has not been demonstrated. Here, it is shown that a simple reduction in temperature during chemical vapor deposition (CVD) on Cu induces in-situ formation of nanoscale defects (≤2-3 nm) in the graphene lattice, enabling direct and scalable synthesis of nanoporous monolayer graphene. By solution-casting of hierarchically porous polyether sulfone supports on the as-grown nanoporous CVD graphene, large-area (>5 cm2 ) NATMs for dialysis applications are demonstrated. The synthesized NATMs show size-selective diffusive transport and effective separation of small molecules and salts from a model protein, with ≈2-100× increase in permeance along with selectivity better than or comparable to state-of-the-art commercially available polymeric dialysis membranes. The membranes constitute the largest fully functional NATMs fabricated via bottom-up nanopore formation, and can be easily scaled up to larger sizes permitted by CVD synthesis. The results highlight synergistic benefits in blending traditional membrane casting with bottom-up pore creation during graphene CVD for advancing NATMs toward practical applications.

15.
Adv Mater ; 30(52): e1801179, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30085371

RESUMO

Atomically thin 2D materials, such as graphene, hexagonal boron-nitride, and others, offer new possibilities for ultrathin barrier and membrane applications. While the impermeability of pristine 2D materials to gas molecules, such as He, allows the realization of the thinnest physical barrier, nanoscale vacancy defects in the 2D material lattice manifest as nanopores in an atomically thin membrane. Such nanoporous atomically thin membranes (NATMs) present potential for enabling ultrahigh permeance and selectivity in a wide range of novel separation processes. Herein, the transport properties observed in NATMs are described and recent experimental progress achieved in their fabrication is summarized. Some of the challenges in NATM scale-up for practical applications are highlighted and several opportunities are identified, including the possibility of blending traditional membrane-processing approaches. Finally, a technological roadmap is presented with a contextual discussion for NATMs to progress from research to applications.

16.
ACS Nano ; 12(5): 4712-4718, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29697954

RESUMO

We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into magnetic tunnel junctions (2D-MTJs) by fabricating two illustrative systems (Co/h-BN/Co and Co/h-BN/Fe) and by discussing h-BN potential for metallic spin filtering. The h-BN is directly grown by chemical vapor deposition on prepatterned Co and Fe stripes. Spin-transport measurements reveal tunnel magneto-resistances in these h-BN-based MTJs as high as 12% for Co/h-BN/h-BN/Co and 50% for Co/h-BN/Fe. We analyze the spin polarizations of h-BN/Co and h-BN/Fe interfaces extracted from experimental spin signals in light of spin filtering at hybrid chemisorbed/physisorbed h-BN, with support of ab initio calculations. These experiments illustrate the strong potential of h-BN for MTJs and are expected to ignite further investigations of 2D materials for large signal spin devices.

17.
ACS Appl Mater Interfaces ; 10(12): 10369-10378, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29553242

RESUMO

Scalable, cost-effective synthesis and integration of graphene is imperative to realize large-area applications such as nanoporous atomically thin membranes (NATMs). Here, we report a scalable route to the production of NATMs via high-speed, continuous synthesis of large-area graphene by roll-to-roll chemical vapor deposition (CVD), combined with casting of a hierarchically porous polymer support. To begin, we designed and built a two zone roll-to-roll graphene CVD reactor, which sequentially exposes the moving foil substrate to annealing and growth atmospheres, with a sharp, isothermal transition between the zones. The configurational flexibility of the reactor design allows for a detailed evaluation of key parameters affecting graphene quality and trade-offs to be considered for high-rate roll-to-roll graphene manufacturing. With this system, we achieve synthesis of uniform high-quality monolayer graphene ( ID/ IG < 0.065) at speeds ≥5 cm/min. NATMs fabricated from the optimized graphene, via polymer casting and postprocessing, show size-selective molecular transport with performance comparable to that of membranes made from conventionally synthesized graphene. Therefore, this work establishes the feasibility of a scalable manufacturing process of NATMs, for applications including protein desalting and small-molecule separations.

18.
Nanoscale ; 9(24): 8496-8507, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28604878

RESUMO

Two-dimensional materials such as graphene offer fundamentally transformative opportunities in membrane separations and as impermeable barriers, but the lack of facile methods to assess and control its 'impermeability' critically limits progress. Here we show that a simple etch of the growth catalyst (Cu) through defects in monolayer graphene synthesized by chemical vapor deposition (CVD) can be used to effectively assess graphene quality for membrane/barrier applications. Using feedback from the method to tune synthesis, we realize graphene with nearly no nanometer-scale defects as assessed by diffusion measurements, in contrast to commercially available graphene that is largely optimized for electronic applications. Interestingly, we observe clear evidence of leakage through larger defects associated with wrinkles in graphene, which are selectively sealed to realize centimeter-scale atomically thin barriers exhibiting <2% mass transport compared to the graphene support. Our work provides a facile method to assess and control the 'impermeability' of graphene and shows that future work should be directed towards the control of leakage associated with wrinkles.

19.
Nat Nanotechnol ; 12(6): 509-522, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28584292

RESUMO

Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.

20.
ACS Nano ; 11(6): 5726-5736, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28609103

RESUMO

Molecular sieving across atomically thin nanoporous graphene is predicted to enable superior gas separation performance compared to conventional membranes. Although molecular sieving has been demonstrated across a few pores in microscale graphene membranes, leakage through nonselective defects presents a major challenge toward realizing selective membranes with high densities of pores over macroscopic areas. Guided by multiscale gas transport modeling of nanoporous graphene membranes, we designed the porous support beneath the graphene to isolate small defects and minimize leakage through larger defects. Ion bombardment followed by oxygen plasma etching was used to produce subnanometer pores in graphene at a density of ∼1011 cm-2. Gas permeance measurements demonstrate selectivity that exceeds the Knudsen effusion ratio and scales with the kinetic diameter of the gas molecules, providing evidence of molecular sieving across centimeter-scale nanoporous graphene. The extracted nanoporous graphene performance is comparable to or exceeds the Robeson limit for polymeric gas separation membranes, confirming the potential of nanoporous graphene membranes for gas separations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...