Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Agron Sustain Dev ; 44(1): 8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282889

RESUMO

Matching crop varieties to their target use context and user preferences is a challenge faced by many plant breeding programs serving smallholder agriculture. Numerous participatory approaches proposed by CGIAR and other research teams over the last four decades have attempted to capture farmers' priorities/preferences and crop variety field performance in representative growing environments through experimental trials with higher external validity. Yet none have overcome the challenges of scalability, data validity and reliability, and difficulties in capturing socio-economic and environmental heterogeneity. Building on the strengths of these attempts, we developed a new data-generation approach, called triadic comparison of technology options (tricot). Tricot is a decentralized experimental approach supported by crowdsourced citizen science. In this article, we review the development, validation, and evolution of the tricot approach, through our own research results and reviewing the literature in which tricot approaches have been successfully applied. The first results indicated that tricot-aggregated farmer-led assessments contained information with adequate validity and that reliability could be achieved with a large sample. Costs were lower than current participatory approaches. Scaling the tricot approach into a large on-farm testing network successfully registered specific climatic effects of crop variety performance in representative growing environments. Tricot's recent application in plant breeding networks in relation to decision-making has (i) advanced plant breeding lines recognizing socio-economic heterogeneity, and (ii) identified consumers' preferences and market demands, generating alternative breeding design priorities. We review lessons learned from tricot applications that have enabled a large scaling effort, which should lead to stronger decision-making in crop improvement and increased use of improved varieties in smallholder agriculture.

2.
Proc Natl Acad Sci U S A ; 120(14): e2205774119, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972461

RESUMO

In the smallholder, low-input farming systems widespread in sub-Saharan Africa, farmers select and propagate crop varieties based on their traditional knowledge and experience. A data-driven integration of their knowledge into breeding pipelines may support the sustainable intensification of local farming. Here, we combine genomics with participatory research to tap into traditional knowledge in smallholder farming systems, using durum wheat (Triticum durum Desf.) in Ethiopia as a case study. We developed and genotyped a large multiparental population, called the Ethiopian NAM (EtNAM), that recombines an elite international breeding line with Ethiopian traditional varieties maintained by local farmers. A total of 1,200 EtNAM lines were evaluated for agronomic performance and farmers' appreciation in three locations in Ethiopia, finding that women and men farmers could skillfully identify the worth of wheat genotypes and their potential for local adaptation. We then trained a genomic selection (GS) model using farmer appreciation scores and found that its prediction accuracy over grain yield (GY) was higher than that of a benchmark GS model trained on GY. Finally, we used forward genetics approaches to identify marker-trait associations for agronomic traits and farmer appreciation scores. We produced genetic maps for individual EtNAM families and used them to support the characterization of genomic loci of breeding relevance with pleiotropic effects on phenology, yield, and farmer preference. Our data show that farmers' traditional knowledge can be integrated in genomics-driven breeding to support the selection of best allelic combinations for local adaptation.


Assuntos
Fazendeiros , Triticum , Feminino , Humanos , Triticum/genética , Melhoramento Vegetal , Fenótipo , Grão Comestível , Genômica
3.
Glob Chang Biol ; 29(8): 2335-2350, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36617489

RESUMO

The climate crisis is impacting agroecosystems and threatening food security of millions of smallholder farmers. Understanding the potential for current and future climatic adaptation of local crop agrobiodiversity may guide breeding efforts and support resilience of agriculture. Here, we combine a genomic and climatic characterization of a large collection of traditional barley varieties from Ethiopia, a staple for local smallholder farmers cropping in challenging environments. We find that the genomic diversity of barley landraces can be partially traced back to geographic and environmental diversity of the landscape. We employ a machine learning approach to model Ethiopian barley adaptation to current climate and to identify areas where its existing diversity may not be well adapted in future climate scenarios. We use this information to identify optimal trajectories of assisted migration compensating to detrimental effects of climate change, finding that Ethiopian barley diversity bears opportunities for adaptation to the climate crisis. We then characterize phenology traits in the collection in two common garden experiments in Ethiopia, using genome-wide association approaches to identify genomic loci associated with timing of flowering and maturity of the spike. We combine this information with genotype-environment associations finding that loci involved in flowering time may also explain environmental adaptation. Our data show that integrated genomic, climatic, and phenotypic characterizations of agrobiodiversity may provide breeding with actionable information to improve local adaptation in smallholder farming systems.


Assuntos
Hordeum , Hordeum/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genômica , Mudança Climática
4.
Commun Biol ; 4(1): 944, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413464

RESUMO

Crop breeding must embrace the broad diversity of smallholder agricultural systems to ensure food security to the hundreds of millions of people living in challenging production environments. This need can be addressed by combining genomics, farmers' knowledge, and environmental analysis into a data-driven decentralized approach (3D-breeding). We tested this idea as a proof-of-concept by comparing a durum wheat (Triticum durum Desf.) decentralized trial distributed as incomplete blocks in 1,165 farmer-managed fields across the Ethiopian highlands with a benchmark representing genomic prediction applied to conventional breeding. We found that 3D-breeding could double the prediction accuracy of the benchmark. 3D-breeding could identify genotypes with enhanced local adaptation providing superior productive performance across seasons. We propose this decentralized approach to leverage the diversity in farmer fields and complement conventional plant breeding to enhance local adaptation in challenging crop production environments.


Assuntos
Produção Agrícola/instrumentação , Genômica , Genótipo , Melhoramento Vegetal/métodos , Triticum/genética , Etiópia
5.
Plant Biotechnol J ; 14(9): 1800-12, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26853077

RESUMO

Durum wheat (Triticum turgidum subsp. durum) is a key crop worldwide, and yet, its improvement and adaptation to emerging environmental threats is made difficult by the limited amount of allelic variation included in its elite pool. New allelic diversity may provide novel loci to international crop breeding through quantitative trait loci (QTL) mapping in unexplored material. Here, we report the extensive molecular and phenotypic characterization of hundreds of Ethiopian durum wheat landraces and several Ethiopian improved lines. We test 81 587 markers scoring 30 155 single nucleotide polymorphisms and use them to survey the diversity, structure, and genome-specific variation in the panel. We show the uniqueness of Ethiopian germplasm using a siding collection of Mediterranean durum wheat accessions. We phenotype the Ethiopian panel for ten agronomic traits in two highly diversified Ethiopian environments for two consecutive years and use this information to conduct a genome-wide association study. We identify several loci underpinning agronomic traits of interest, both confirming loci already reported and describing new promising genomic regions. These loci may be efficiently targeted with molecular markers already available to conduct marker-assisted selection in Ethiopian and international wheat. We show that Ethiopian durum wheat represents an important and mostly unexplored source of durum wheat diversity. The panel analysed in this study allows the accumulation of QTL mapping experiments, providing the initial step for a quantitative, methodical exploitation of untapped diversity in producing a better wheat.


Assuntos
Melhoramento Vegetal , Triticum/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Locos de Características Quantitativas/genética , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...