Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
NPJ Precis Oncol ; 7(1): 98, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752266

RESUMO

Studies have shown that colorectal cancer prognosis can be predicted by deep learning-based analysis of histological tissue sections of the primary tumor. So far, this has been achieved using a binary prediction. Survival curves might contain more detailed information and thus enable a more fine-grained risk prediction. Therefore, we established survival curve-based CRC survival predictors and benchmarked them against standard binary survival predictors, comparing their performance extensively on the clinical high and low risk subsets of one internal and three external cohorts. Survival curve-based risk prediction achieved a very similar risk stratification to binary risk prediction for this task. Exchanging other components of the pipeline, namely input tissue and feature extractor, had largely identical effects on model performance independently of the type of risk prediction. An ensemble of all survival curve-based models exhibited a more robust performance, as did a similar ensemble based on binary risk prediction. Patients could be further stratified within clinical risk groups. However, performance still varied across cohorts, indicating limited generalization of all investigated image analysis pipelines, whereas models using clinical data performed robustly on all cohorts.

2.
Eur J Cancer ; 157: 464-473, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34649117

RESUMO

BACKGROUND: Lymph node status is a prognostic marker and strongly influences therapeutic decisions in colorectal cancer (CRC). OBJECTIVES: The objective of the study is to investigate whether image features extracted by a deep learning model from routine histological slides and/or clinical data can be used to predict CRC lymph node metastasis (LNM). METHODS: Using histological whole slide images (WSIs) of primary tumours of 2431 patients in the DACHS cohort, we trained a convolutional neural network to predict LNM. In parallel, we used clinical data derived from the same cases in logistic regression analyses. Subsequently, the slide-based artificial intelligence predictor (SBAIP) score was included in the regression. WSIs and data from 582 patients of the TCGA cohort were used as the external test set. RESULTS: On the internal test set, the SBAIP achieved an area under receiver operating characteristic (AUROC) of 71.0%, the clinical classifier achieved an AUROC of 67.0% and a combination of the two classifiers yielded an improvement to 74.1%. Whereas the clinical classifier's performance remained stable on the TCGA set, performance of the SBAIP dropped to an AUROC of 61.2%. Performance of the clinical classifier depended strongly on the T stage. CONCLUSION: Deep learning-based image analysis may help predict LNM of patients with CRC using routine histological slides. Combination with clinical data such as T stage might be useful. Strategies to increase performance of the SBAIP on external images should be investigated.


Assuntos
Neoplasias Colorretais/patologia , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Metástase Linfática/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Colo/patologia , Colo/cirurgia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/cirurgia , Feminino , Humanos , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Curva ROC , Reto/patologia , Reto/cirurgia
3.
JMIR Mhealth Uhealth ; 9(8): e22909, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34448722

RESUMO

BACKGROUND: Artificial intelligence (AI) has shown potential to improve diagnostics of various diseases, especially for early detection of skin cancer. Studies have yet to investigate the clear application of AI technology in clinical practice or determine the added value for younger user groups. Translation of AI-based diagnostic tools can only be successful if they are accepted by potential users. Young adults as digital natives may offer the greatest potential for successful implementation of AI into clinical practice, while at the same time, representing the future generation of skin cancer screening participants. OBJECTIVE: We conducted an anonymous online survey to examine how and to what extent individuals are willing to accept AI-based mobile apps for skin cancer diagnostics. We evaluated preferences and relative influences of concerns, with a focus on younger age groups. METHODS: We recruited participants below 35 years of age using three social media channels-Facebook, LinkedIn, and Xing. Descriptive analysis and statistical tests were performed to evaluate participants' attitudes toward mobile apps for skin examination. We integrated an adaptive choice-based conjoint to assess participants' preferences. We evaluated potential concerns using maximum difference scaling. RESULTS: We included 728 participants in the analysis. The majority of participants (66.5%, 484/728; 95% CI 0.631-0.699) expressed a positive attitude toward the use of AI-based apps. In particular, participants residing in big cities or small towns (P=.02) and individuals that were familiar with the use of health or fitness apps (P=.02) were significantly more open to mobile diagnostic systems. Hierarchical Bayes estimation of the preferences of participants with a positive attitude (n=484) revealed that the use of mobile apps as an assistance system was preferred. Participants ruled out app versions with an accuracy of ≤65%, apps using data storage without encryption, and systems that did not provide background information about the decision-making process. However, participants did not mind their data being used anonymously for research purposes, nor did they object to the inclusion of clinical patient information in the decision-making process. Maximum difference scaling analysis for the negative-minded participant group (n=244) showed that data security, insufficient trust in the app, and lack of personal interaction represented the dominant concerns with respect to app use. CONCLUSIONS: The majority of potential future users below 35 years of age were ready to accept AI-based diagnostic solutions for early detection of skin cancer. However, for translation into clinical practice, the participants' demands for increased transparency and explainability of AI-based tools seem to be critical. Altogether, digital natives between 18 and 24 years and between 25 and 34 years of age expressed similar preferences and concerns when compared both to each other and to results obtained by previous studies that included other age groups.


Assuntos
Aplicativos Móveis , Neoplasias Cutâneas , Inteligência Artificial , Teorema de Bayes , Exercício Físico , Humanos , Neoplasias Cutâneas/diagnóstico , Adulto Jovem
4.
Eur J Cancer ; 155: 200-215, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34391053

RESUMO

BACKGROUND: Gastrointestinal cancers account for approximately 20% of all cancer diagnoses and are responsible for 22.5% of cancer deaths worldwide. Artificial intelligence-based diagnostic support systems, in particular convolutional neural network (CNN)-based image analysis tools, have shown great potential in medical computer vision. In this systematic review, we summarise recent studies reporting CNN-based approaches for digital biomarkers for characterization and prognostication of gastrointestinal cancer pathology. METHODS: Pubmed and Medline were screened for peer-reviewed papers dealing with CNN-based gastrointestinal cancer analyses from histological slides, published between 2015 and 2020.Seven hundred and ninety titles and abstracts were screened, and 58 full-text articles were assessed for eligibility. RESULTS: Sixteen publications fulfilled our inclusion criteria dealing with tumor or precursor lesion characterization or prognostic and predictive biomarkers: 14 studies on colorectal or rectal cancer, three studies on gastric cancer and none on esophageal cancer. These studies were categorised according to their end-points: polyp characterization, tumor characterization and patient outcome. Regarding the translation into clinical practice, we identified several studies demonstrating generalization of the classifier with external tests and comparisons with pathologists, but none presenting clinical implementation. CONCLUSIONS: Results of recent studies on CNN-based image analysis in gastrointestinal cancer pathology are promising, but studies were conducted in observational and retrospective settings. Large-scale trials are needed to assess performance and predict clinical usefulness. Furthermore, large-scale trials are required for approval of CNN-based prediction models as medical devices.


Assuntos
Aprendizado Profundo/normas , Neoplasias Gastrointestinais/classificação , Neoplasias Gastrointestinais/patologia , Humanos , Resultado do Tratamento
5.
Eur J Cancer ; 154: 227-234, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298373

RESUMO

AIM: Sentinel lymph node status is a central prognostic factor for melanomas. However, the surgical excision involves some risks for affected patients. In this study, we therefore aimed to develop a digital biomarker that can predict lymph node metastasis non-invasively from digitised H&E slides of primary melanoma tumours. METHODS: A total of 415 H&E slides from primary melanoma tumours with known sentinel node (SN) status from three German university hospitals and one private pathological practice were digitised (150 SN positive/265 SN negative). Two hundred ninety-one slides were used to train artificial neural networks (ANNs). The remaining 124 slides were used to test the ability of the ANNs to predict sentinel status. ANNs were trained and/or tested on data sets that were matched or not matched between SN-positive and SN-negative cases for patient age, ulceration, and tumour thickness, factors that are known to correlate with lymph node status. RESULTS: The best accuracy was achieved by an ANN that was trained and tested on unmatched cases (61.8% ± 0.2%) area under the receiver operating characteristic (AUROC). In contrast, ANNs that were trained and/or tested on matched cases achieved (55.0% ± 3.5%) AUROC or less. CONCLUSION: Our results indicate that the image classifier can predict lymph node status to some, albeit so far not clinically relevant, extent. It may do so by mostly detecting equivalents of factors on histological slides that are already known to correlate with lymph node status. Our results provide a basis for future research with larger data cohorts.


Assuntos
Aprendizado Profundo , Melanoma/patologia , Linfonodo Sentinela/patologia , Adulto , Idoso , Humanos , Metástase Linfática , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...