Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(17): e2218522120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068243

RESUMO

Prostate cancer (PC) is the most frequently diagnosed malignancy and a leading cause of cancer deaths in US men. Many PC cases metastasize and develop resistance to systemic hormonal therapy, a stage known as castration-resistant prostate cancer (CRPC). Therefore, there is an urgent need to develop effective therapeutic strategies for CRPC. Traditional drug discovery pipelines require significant time and capital input, which highlights a need for novel methods to evaluate the repositioning potential of existing drugs. Here, we present a computational framework to predict drug sensitivities of clinical CRPC tumors to various existing compounds and identify treatment options with high potential for clinical impact. We applied this method to a CRPC patient cohort and nominated drugs to combat resistance to hormonal therapies including abiraterone and enzalutamide. The utility of this method was demonstrated by nomination of multiple drugs that are currently undergoing clinical trials for CRPC. Additionally, this method identified the tetracycline derivative COL-3, for which we validated higher efficacy in an isogenic cell line model of enzalutamide-resistant vs. enzalutamide-sensitive CRPC. In enzalutamide-resistant CRPC cells, COL-3 displayed higher activity for inhibiting cell growth and migration, and for inducing G1-phase cell cycle arrest and apoptosis. Collectively, these findings demonstrate the utility of a computational framework for independent validation of drugs being tested in CRPC clinical trials, and for nominating drugs with enhanced biological activity in models of enzalutamide-resistant CRPC. The efficiency of this method relative to traditional drug development approaches indicates a high potential for accelerating drug development for CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Nitrilas/farmacologia , Descoberta de Drogas , Castração , Resistencia a Medicamentos Antineoplásicos , Receptores Androgênicos/metabolismo
2.
J Chem Phys ; 158(11): 114801, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948839

RESUMO

We describe a new open-source Python-based package for high accuracy correlated electron calculations using quantum Monte Carlo (QMC) in real space: PyQMC. PyQMC implements modern versions of QMC algorithms in an accessible format, enabling algorithmic development and easy implementation of complex workflows. Tight integration with the PySCF environment allows for a simple comparison between QMC calculations and other many-body wave function techniques, as well as access to high accuracy trial wave functions.

3.
Methods Mol Biol ; 2155: 11-21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32474864

RESUMO

The discovery of induced pluripotent stem cell (iPSC) technology has provided a versatile platform for basic science research and regenerative medicine. With the rise of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) systems and the ease at which they can be utilized for gene editing, creating genetically modified iPSCs has never been more advantageous for studying both organism development and potential clinical applications. However, to better understand the behavior and true therapeutic potential of iPSCs and iPSC-derived cells, a tool for labeling and monitoring these cells in vitro and in vivo is needed. Here, we describe a protocol that provides a straightforward method for introducing a stable, highly expressed fluorescent protein into iPSCs using the CRISPR/Cas9 system and a standardized donor vector. The approach involves the integration of the EGFP transgene into the transcriptionally active adeno-associated virus integration site 1 (AAVS1) locus through homology directed repair. The knockin of this transgene results in the generation of iPSC lines with constitutive expression of the EGFP protein that also persists in differentiated iPSCs. These EGFP-labeled iPSC lines are ideal for assessing iPSC differentiation in vitro and evaluating the distribution of iPSC-derived cells in vivo after transplantation into model animals.


Assuntos
Expressão Gênica , Genes Reporter , Engenharia Genética , Proteínas de Fluorescência Verde/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Edição de Genes , Técnicas de Introdução de Genes , Marcação de Genes , Engenharia Genética/métodos , Vetores Genéticos/genética , Humanos
4.
PLoS Genet ; 16(6): e1008830, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32502192

RESUMO

Many post-transcriptional mechanisms operate via mRNA 3'UTRs to regulate protein expression, and such controls are crucial for development. We show that homozygous mutations in two zebrafish exon junction complex (EJC) core genes rbm8a and magoh leads to muscle disorganization, neural cell death, and motor neuron outgrowth defects, as well as dysregulation of mRNAs subjected to nonsense-mediated mRNA decay (NMD) due to translation termination ≥ 50 nts upstream of the last exon-exon junction. Intriguingly, we find that EJC-dependent NMD also regulates a subset of transcripts that contain 3'UTR introns (3'UI) < 50 nts downstream of a stop codon. Some transcripts containing such stop codon-proximal 3'UI are also NMD-sensitive in cultured human cells and mouse embryonic stem cells. We identify 167 genes that contain a conserved proximal 3'UI in zebrafish, mouse and humans. foxo3b is one such proximal 3'UI-containing gene that is upregulated in zebrafish EJC mutant embryos, at both mRNA and protein levels, and loss of foxo3b function in EJC mutant embryos significantly rescues motor axon growth defects. These data are consistent with EJC-dependent NMD regulating foxo3b mRNA to control protein expression during zebrafish development. Our work shows that the EJC is critical for normal zebrafish development and suggests that proximal 3'UIs may serve gene regulatory function in vertebrates.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Códon de Terminação , Conjuntos de Dados como Assunto , Embrião não Mamífero , Éxons/genética , Redes Reguladoras de Genes/genética , Homozigoto , Humanos , Íntrons/genética , Camundongos , Músculo Esquelético/inervação , Mutagênese , Mutação , Crescimento Neuronal/genética , Proteínas Nucleares/genética , Terminação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , RNA-Seq , Alinhamento de Sequência , Regulação para Cima , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
5.
Hum Mol Genet ; 29(R1): R19-R26, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32412639

RESUMO

Prostate cancer is the second leading cause of male cancer death in the United States. The androgen receptor (AR) transcription factor is a master regulator of normal glandular homeostasis in the prostate, as well as growth and survival of prostate cancer cells. Therefore, AR-targeted therapies are effective for improving overall survival of patients with advanced prostate cancer that is incurable by surgery or radiation. However, prostate cancer will inevitably progress on AR-targeted therapies to a castration-resistant prostate cancer (CRPC) phenotype that accounts for virtually all prostate cancer-specific death. mRNA transcript variants of the AR gene are expressed in CRPC cells and can be translated to produce AR variant (AR-V) proteins that function as ligand-independent, constitutively active transcription factors. AR-Vs are able to support growth of CRPC cells by promoting expression of AR target genes that are normally suppressed by AR-targeted therapies. Knowledge of mechanisms that govern expression of AR-Vs is incomplete. Studies have shown genomic rearrangements of the AR gene underlie expression of diverse AR-Vs in certain CRPC tumors, but post-transcriptional processes represent a broader regulatory mechanism for expression of AR-Vs in CRPC. This review focuses on alternative splicing, 3' end processing, miRNA-mediated mRNA repression, of AR and AR-V expression and the potential these mechanisms hold as therapeutic targets for CRPC.


Assuntos
Processamento Alternativo , Antagonistas de Receptores de Andrógenos/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Terapia de Alvo Molecular , Neoplasias da Próstata/tratamento farmacológico , RNA Mensageiro/genética , Receptores Androgênicos/química , Animais , Rearranjo Gênico , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética
6.
Dev Biol ; 462(2): 129-140, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32246943

RESUMO

Vertebrate segmentation is regulated by the segmentation clock, a biological oscillator that controls periodic formation of somites, or embryonic segments, which give rise to many mesodermal tissue types. This molecular oscillator generates cyclic gene expression with the same periodicity as somite formation in the presomitic mesoderm (PSM), an area of mesenchymal cells that give rise to mature somites. Molecular components of the clock include the Hes/her family of genes that encode transcriptional repressors, but additional genes cycle. Cyclic gene transcripts are cleared rapidly, and clearance depends upon the pnrc2 (proline-rich nuclear receptor co-activator 2) gene that encodes an mRNA decay adaptor. Previously, we showed that the her1 3'UTR confers instability to otherwise stable transcripts in a Pnrc2-dependent manner, however, the molecular mechanism(s) by which cyclic gene transcripts are cleared remained largely unknown. To identify features of the her1 3'UTR that are critical for Pnrc2-mediated decay, we developed an array of transgenic inducible reporter lines carrying different regions of the 3'UTR. We find that the terminal 179 nucleotides (nts) of the her1 3'UTR are necessary and sufficient to confer rapid instability. Additionally, we show that the 3'UTR of another cyclic gene, deltaC (dlc), also confers Pnrc2-dependent instability. Motif analysis reveals that both her1 and dlc 3'UTRs contain terminally-located Pumilio response elements (PREs) and AU-rich elements (AREs), and we show that the PRE and ARE in the last 179 â€‹nts of the her1 3'UTR drive rapid turnover of reporter mRNA. Finally, we show that mutation of Pnrc2 residues and domains that are known to facilitate interaction of human PNRC2 with decay factors DCP1A and UPF1 reduce the ability of Pnrc2 to restore normal cyclic gene expression in pnrc2 mutant embryos. Our findings suggest that Pnrc2 interacts with decay machinery components and cooperates with Pumilio (Pum) proteins and ARE-binding proteins to promote rapid turnover of cyclic gene transcripts during somitogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estabilidade de RNA/fisiologia , Transativadores/genética , Transativadores/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Regiões 3' não Traduzidas , Animais , Relógios Biológicos/genética , Padronização Corporal/genética , Desenvolvimento Embrionário , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Somitos/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia
7.
Dev Biol ; 429(1): 225-239, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28648842

RESUMO

Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay.


Assuntos
Regiões 3' não Traduzidas/genética , Relógios Biológicos/genética , Padronização Corporal/genética , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromossomos/genética , Cromossomos Artificiais Bacterianos/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Mutação/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Fenótipo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética , Proteínas de Peixe-Zebra/genética , Zigoto/metabolismo
8.
Horm Cancer ; 8(2): 69-77, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28194662

RESUMO

Triple-negative breast cancer (TNBC) has a faster rate of metastasis compared to other breast cancer subtypes, and no effective targeted therapies are currently FDA-approved. Recent data indicate that the androgen receptor (AR) promotes tumor survival and may serve as a potential therapeutic target in TNBC. Studies of AR in disease progression and the systemic effects of anti-androgens have been hindered by the lack of an AR-positive (AR+) immunocompetent preclinical model. In this study, we identified the transgenic MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mouse mammary gland carcinoma model of breast cancer and Met-1 cells derived from this model as tools to study the role of AR in breast cancer progression. AR protein expression was examined in late-stage primary tumors and lung metastases from MMTV-PyMT mice as well as in Met-1 cells by immunohistochemistry (IHC). Sensitivity of Met-1 cells to the AR agonist dihydrotestosterone (DHT) and anti-androgen therapy was examined using cell viability, migration/invasion, and anchorage-independent growth assays. Late-stage primary tumors and lung metastases from MMTV-PyMT mice and Met-1 cells expressed abundant nuclear AR protein, while negative for estrogen and progesterone receptors. Met-1 sensitivity to DHT and AR antagonists demonstrated a reliance on AR for survival, and AR antagonists inhibited invasion and anchorage-independent growth. These data suggest that the MMTV-PyMT model and Met-1 cells may serve as valuable tools for mechanistic studies of the role of AR in disease progression and how anti-androgens affect the tumor microenvironment.


Assuntos
Neoplasias Pulmonares/patologia , Neoplasias Mamárias Experimentais/metabolismo , Receptores Androgênicos/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Antagonistas de Androgênios/administração & dosagem , Antagonistas de Androgênios/farmacologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Di-Hidrotestosterona/administração & dosagem , Di-Hidrotestosterona/farmacologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/secundário , Vírus do Tumor Mamário do Camundongo/fisiologia , Camundongos , Camundongos Transgênicos
9.
Development ; 143(22): 4236-4248, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27729410

RESUMO

Profiling of RNA from mouse mammary epithelial cells (MECs) isolated on pregnancy day (P)14 and lactation day (L)2 revealed that the majority of differentially expressed microRNA declined precipitously between late pregnancy and lactation. The decline in miR-150, which exhibited the greatest fold-decrease, was verified quantitatively and qualitatively. To test the hypothesis that the decline in miR-150 is crucial for lactation, MEC-specific constitutive miR-150 was achieved by crossing ROSA26-lox-STOP-lox-miR-150 mice with WAP-driven Cre recombinase mice. Both biological and foster pups nursed by bitransgenic dams exhibited a dramatic decrease in survival compared with offspring nursed by littermate control dams. Protein products of predicted miR-150 targets Fasn, Olah, Acaca, and Stat5B were significantly suppressed in MECs of bitransgenic mice with constitutive miR-150 expression as compared with control mice at L2. Lipid profiling revealed a significant reduction in fatty acids synthesized by the de novo pathway in L2 MECs of bitransgenic versus control mice. Collectively, these data support the hypothesis that a synchronized decrease in miRNAs, such as miR-150, at late pregnancy serves to allow translation of targets crucial for lactation.


Assuntos
Lactação/genética , Lipogênese/genética , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , Animais , Células Cultivadas , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Lactação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Análise em Microsséries , Gravidez/genética , Gravidez/metabolismo
10.
Mol Cancer Res ; 14(11): 1054-1067, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27565181

RESUMO

Androgen receptor (AR) is expressed in 90% of estrogen receptor alpha-positive (ER+) breast tumors, but its role in tumor growth and progression remains controversial. Use of two anti-androgens that inhibit AR nuclear localization, enzalutamide and MJC13, revealed that AR is required for maximum ER genomic binding. Here, a novel global examination of AR chromatin binding found that estradiol induced AR binding at unique sites compared with dihydrotestosterone (DHT). Estradiol-induced AR-binding sites were enriched for estrogen response elements and had significant overlap with ER-binding sites. Furthermore, AR inhibition reduced baseline and estradiol-mediated proliferation in multiple ER+/AR+ breast cancer cell lines, and synergized with tamoxifen and fulvestrant. In vivo, enzalutamide significantly reduced viability of tamoxifen-resistant MCF7 xenograft tumors and an ER+/AR+ patient-derived model. Enzalutamide also reduced metastatic burden following cardiac injection. Finally, in a comparison of ER+/AR+ primary tumors versus patient-matched local recurrences or distant metastases, AR expression was often maintained even when ER was reduced or absent. These data provide preclinical evidence that anti-androgens that inhibit AR nuclear localization affect both AR and ER, and are effective in combination with current breast cancer therapies. In addition, single-agent efficacy may be possible in tumors resistant to traditional endocrine therapy, as clinical specimens of recurrent disease demonstrate AR expression in tumors with absent or refractory ER. IMPLICATIONS: This study suggests that AR plays a previously unrecognized role in supporting E2-mediated ER activity in ER+/AR+ breast cancer cells, and that enzalutamide may be an effective therapeutic in ER+/AR+ breast cancers. Mol Cancer Res; 14(11); 1054-67. ©2016 AACR.


Assuntos
Neoplasias da Mama/genética , Cromatina/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feniltioidantoína/análogos & derivados , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/genética , Tamoxifeno/administração & dosagem , Anilidas/farmacologia , Benzamidas , Sítios de Ligação , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Cicloexanos/farmacologia , Progressão da Doença , Estradiol , Feminino , Humanos , Células MCF-7 , Nitrilas , Feniltioidantoína/administração & dosagem , Feniltioidantoína/farmacologia , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA