Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2333483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532703

RESUMO

Although the role of the intestinal microbiota in the pathogenesis of inflammatory bowel disease (IBD) is beyond debate, attempts to verify the causative role of IBD-associated dysbiosis have been limited to reports of promoting the disease in genetically susceptible mice or in chemically induced colitis. We aimed to further test the host response to fecal microbiome transplantation (FMT) from Crohn's disease patients on mucosal homeostasis in ex-germ-free (xGF) mice. We characterized and transferred fecal microbiota from healthy patients and patients with defined Crohn's ileocolitis (CD_L3) to germ-free mice and analyzed the resulting microbial and mucosal homeostasis by 16S profiling, shotgun metagenomics, histology, immunofluorescence (IF) and RNAseq analysis. We observed a markedly reduced engraftment of CD_L3 microbiome compared to healthy control microbiota. FMT from CD_L3 patients did not lead to ileitis but resulted in colitis with features consistent with CD: a discontinued pattern of colitis, more proximal colonic localization, enlarged isolated lymphoid follicles and/or tertiary lymphoid organ neogenesis, and a transcriptomic pattern consistent with epithelial reprograming and promotion of the Paneth cell-like signature in the proximal colon and immune dysregulation characteristic of CD. The observed inflammatory response was associated with persistently increased abundance of Ruminococcus gnavus, Erysipelatoclostridium ramosum, Faecalimonas umbilicate, Blautia hominis, Clostridium butyricum, and C. paraputrificum and unexpected growth of toxigenic C. difficile, which was below the detection level in the community used for inoculation. Our study provides the first evidence that the transfer of a dysbiotic community from CD patients can lead to spontaneous inflammatory changes in the colon of xGF mice and identifies a signature microbial community capable of promoting colonization of pathogenic and conditionally pathogenic bacteria.


Assuntos
Clostridioides difficile , Colite , Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Camundongos , Animais , Doença de Crohn/microbiologia , Transplante de Microbiota Fecal , Disbiose/microbiologia
2.
EMBO J ; 42(21): e113975, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37718683

RESUMO

Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.


Assuntos
Microbiota , Celulas de Paneth , Humanos , Animais , Camundongos , Celulas de Paneth/metabolismo , Celulas de Paneth/patologia , Intestino Delgado , Inflamação/patologia , Citocinas/metabolismo
3.
Nat Sci Sleep ; 14: 1623-1639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111259

RESUMO

Purpose: Gut dysbiosis can cause cardiometabolic disease. Gut dysbiosis can be independently caused by high-fat diet (HFD) and intermittent hypoxia (IH; characterizing obstructive sleep apnea), but the interactive effect of combined intermittent and sustained hypoxia (IH+SH) (characterizing obesity hypoventilation syndrome) and HFD on gut dysbiosis is unclear. We aimed to investigate the interactive effect of a combination of IH and SH and HFD on proximal colonic microbiota and colonic gene expression pattern. Methods: Male mice (n=16) were randomly received four different combinations of diet (normal versus HFD) and oxygen conditions (normoxia versus IH+SH) for 4 weeks. Bacterial DNA and mucosal epithelial cell RNA from proximal colon were collected for analysis of adherent microbiome and host's gene expression analysis. Results: HFD during IH+SH (22.6 ± 5.73; SD) led to greater Firmicutes: Bacteroidetes ratio than HFD during normoxia (5.89 ± 1.19; p=0.029). HFD significantly decreased microbial diversity as compared to normal diet, but the addition of IH+SH to HFD mildly reversed such effects. When compared to HFD during normoxia, HFD with combination of IH+SH resulted in changes to host mucosal gene expression for apical junctional complexes and adhesion molecules. Specifically, when compared to HFD during normoxia, HFD during IH+SH led to upregulation of Claudin 2 and Syk (tight junction dysfunction and increased mucosal permeability), while the barrier promoting claudin 4 was downregulated. Conclusion: HFD during combined IH and SH causes greater gut dysbiosis and potentially adverse changes in colonic epithelial transcriptome than HFD during normoxia. The latter changes are suggestive of impaired gut barrier function.

4.
Sci Rep ; 12(1): 14725, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042372

RESUMO

Dysregulation of intra- and extracellular pH in cancer contributes to extracellular matrix remodeling, favors cell migration, proliferation, and metastasis. Although the primary attention has been focused on the role of the ubiquitous Na+/H+ exchanger isoform NHE1, the role of NHE3, the predominant apical isoform in colonic surface epithelium in the pathogenesis of colon cancer has not been investigated. Here, we show that NHE3 mRNA expression is significantly reduced in colorectal cancer patients and that low NHE3 expression is associated with poorer survival. Deletion of NHE3 in ApcMin mice evaluated at 15 weeks of age (significant mortality was observed beyond this time) led to lower body weights, increased mucosal inflammation, increased colonic tumor numbers, evidence of enhanced DNA damage in tumor surface epithelium, and to significant alteration in the gut microbiota. In the absence of the inflammatory and microbial pressors, ca. 70% knockdown of NHE3 expression in SK-CO15 cells led to reduced intracellular pH, elevated apical pH, dramatic differences in their transcriptomic profile, increased susceptibility to DNA damage, increased proliferation, decreased apoptosis and reduced adhesion to extracellular matrix proteins. Our findings suggest that loss of NHE3 in the surface epithelium of colonic tumors has profound consequences for cancer progression and behavior.


Assuntos
Neoplasias do Colo , Trocador 3 de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Dano ao DNA , Inflamação/genética , Camundongos , Isoformas de Proteínas/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
5.
Biochem Biophys Res Commun ; 591: 13-19, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34990903

RESUMO

Inhalation of the fungus Alternaria alternata is associated with an increased risk of allergic asthma development and exacerbations. Recent work in acute exposure animal models suggests that A. alternata-induced asthma symptoms, which include inflammation, mucus overproduction and airway hyperresponsiveness, are due to A. alternata proteases that act via protease-activated receptor-2 (PAR2). However, because other active components present in A. alternata may be contributing to asthma pathophysiology through alternative signaling, the specific role PAR2 plays in asthma initiation and maintenance remains undefined. Airway epithelial cells provide the first encounter with A. alternata and are thought to play an important role in initiating the physiologic response. To better understand the role for PAR2 airway epithelial signaling we created a PAR2-deficient human bronchial epithelial cell line (16HBEPAR-/-) from a model bronchial parental line (16HBE14o-). Comparison of in vitro physiologic responses in these cell lines demonstrated a complete loss of PAR2 agonist (2at-LIGRL-NH2) response and significantly attenuated protease (trypsin and elastase) and A. alternata responses in the 16HBEPAR-/- line. Apical application of A. alternata to 16HBE14o- and 16HBEPAR2-/- grown at air-liquid interface demonstrated rapid, PAR2-dependent and independent, inflammatory cytokine, chemokine and growth factor basolateral release. In conclusion, the novel human PAR2-deficient cell line allows for direct in vitro examination of the role(s) for PAR2 in allergen challenge with polarized human airway epithelial cells.


Assuntos
Alternaria/fisiologia , Brônquios/patologia , Células Epiteliais/microbiologia , Inflamação/patologia , Receptor PAR-2/metabolismo , Transdução de Sinais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Linhagem Celular , Células Epiteliais/metabolismo , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-37779901

RESUMO

Inorganic arsenic (iAs) exposure has been associated to various detrimental effects such as development of metabolic syndrome and type 2 diabetes via oxidative stress and induced prolonged activation of the NRF2 transcription factor. Such effects can be aggravated by poor dietary habits. The role of gut microbiota in promoting metabolic changes in response to arsenic has yet to be precisely defined. To address the complexity of the interactions between diet, NFE2L2/NRF2, and gut microbiota, we studied the chronic effects of iAs exposure in wild-type (WT) and Nrf2-/- mice fed normal (ND) vs. high-fat diet (HFD), on the gut microbial community in the context of hepatic metabolism. We demonstrate that all treatments and interactions influenced bacteria and metabolic profiles, with dietary differences causing a strong overlap of responses between the datasets. By identifying five metabolites of known microbial origin and following their fate across treatments, we provide examples on how gut microbial products can participate in the development of iAs and HFD-induced metabolic disease. Overall, our results underline the importance of the microbial community in driving gut-liver-cross talk during iAs and HFD exposure.

7.
Dev Biol ; 480: 50-61, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411593

RESUMO

During postnatal intestinal development, the intestinal epithelium is highly proliferative, and this proliferation is regulated by signaling in the intervillous and crypt regions. This signaling is primarily mediated by Wnt, and requires membrane trafficking. However, the mechanisms by which membrane trafficking regulates signaling during this developmental phase are largely unknown. Endotubin (EDTB, MAMDC4) is an endosomal protein that is highly expressed in the apical endocytic complex (AEC) of villus enterocytes during fetal and postnatal development, and knockout of EDTB results in defective formation of the AEC and giant lysosome. Further, knockout of EDTB in cell lines results in decreased proliferation. However, the role of EDTB in proliferation during the development of the intestine is unknown. Using Villin-CreERT2 in EDTBfl/fl mice, we deleted EDTB in the intestine in the early postnatal period, or in enteroids in vitro after isolation of intervillous cells. Loss of EDTB results in decreased proliferation in the developing intestinal epithelium and decreased ability to form enteroids. EDTB is present in cells that contain the stem cell markers LGR5 and OLFM4, indicating that it is expressed in the proliferative compartment. Further, using immunoblot analysis and TCF/LEF-GFP mice as a reporter of Wnt activity, we find that knockout of EDTB results in decreased Wnt signaling. Our results show that EDTB is essential for normal proliferation during the early stages of intestinal development and suggest that this effect is through modulation of Wnt signaling.


Assuntos
Proliferação de Células/genética , Glicoproteínas/genética , Intestinos/embriologia , Animais , Diferenciação Celular/genética , Proliferação de Células/fisiologia , Endossomos/metabolismo , Enterócitos/metabolismo , Feminino , Glicoproteínas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia
8.
Microbiome ; 9(1): 158, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261525

RESUMO

BACKGROUND: This study focuses on the processes occurring during the acidogenic step of anaerobic digestion, especially resulting from nutritional interactions between dark fermentation (DF) bacteria and lactic acid bacteria (LAB). Previously, we have confirmed that DF microbial communities (MCs) that fed on molasses are able to convert lactate and acetate to butyrate. The aims of the study were to recognize the biodiversity of DF-MCs able and unable to convert lactate and acetate to butyrate and to define the conditions for the transformation. RESULTS: MCs sampled from a DF bioreactor were grown anaerobically in mesophilic conditions on different media containing molasses or sucrose and/or lactate and acetate in five independent static batch experiments. The taxonomic composition (based on 16S_rRNA profiling) of each experimental MC was analysed in reference to its metabolites and pH of the digestive liquids. In the samples where the fermented media contained carbohydrates, the two main tendencies were observed: (i) a low pH (pH ≤ 4), lactate and ethanol as the main fermentation products, MCs dominated with Lactobacillus, Bifidobacterium, Leuconostoc and Fructobacillus was characterized by low biodiversity; (ii) pH in the range 5.0-6.0, butyrate dominated among the fermentation products, the MCs composed mainly of Clostridium (especially Clostridium_sensu_stricto_12), Lactobacillus, Bifidobacterium and Prevotella. The biodiversity increased with the ability to convert acetate and lactate to butyrate. The MC processing exclusively lactate and acetate showed the highest biodiversity and was dominated by Clostridium (especially Clostridium_sensu_stricto_12). LAB were reduced; other genera such as Terrisporobacter, Lachnoclostridium, Paraclostridium or Sutterella were found. Butyrate was the main metabolite and pH was 7. Shotgun metagenomic analysis of the selected butyrate-producing MCs independently on the substrate revealed C.tyrobutyricum as the dominant Clostridium species. Functional analysis confirmed the presence of genes encoding key enzymes of the fermentation routes. CONCLUSIONS: Batch tests revealed the dynamics of metabolic activity and composition of DF-MCs dependent on fermentation conditions. The balance between LAB and the butyrate producers and the pH values were shown to be the most relevant for the process of lactate and acetate conversion to butyrate. To close the knowledge gaps is to find signalling factors responsible for the metabolic shift of the DF-MCs towards lactate fermentation. Video Abstract.


Assuntos
Butiratos , Microbiota , Reatores Biológicos , Fermentação , Ácido Láctico
9.
Mol Metab ; 51: 101243, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33933676

RESUMO

OBJECTIVE: NRF2, a transcription factor that regulates cellular redox and metabolic homeostasis, plays a dual role in human disease. While it is well known that canonical intermittent NRF2 activation protects against diabetes-induced tissue damage, little is known regarding the effects of prolonged non-canonical NRF2 activation in diabetes. The goal of this study was to determine the role and mechanisms of prolonged NRF2 activation in arsenic diabetogenicity. METHODS: To test this, we utilized an integrated transcriptomic and metabolomic approach to assess diabetogenic changes in the livers of wild type, Nrf2-/-, p62-/-, or Nrf2-/-; p62-/- mice exposed to arsenic in the drinking water for 20 weeks. RESULTS: In contrast to canonical oxidative/electrophilic activation, prolonged non-canonical NRF2 activation via p62-mediated sequestration of KEAP1 increases carbohydrate flux through the polyol pathway, resulting in a pro-diabetic shift in glucose homeostasis. This p62- and NRF2-dependent increase in liver fructose metabolism and gluconeogenesis occurs through the upregulation of four novel NRF2 target genes, ketohexokinase (Khk), sorbitol dehydrogenase (Sord), triokinase/FMN cyclase (Tkfc), and hepatocyte nuclear factor 4 (Hnf4A). CONCLUSION: We demonstrate that NRF2 and p62 are essential for arsenic-mediated insulin resistance and glucose intolerance, revealing a pro-diabetic role for prolonged NRF2 activation in arsenic diabetogenesis.


Assuntos
Diabetes Mellitus Experimental/genética , Gluconeogênese/genética , Resistência à Insulina/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Arsênio/toxicidade , Diabetes Mellitus Experimental/induzido quimicamente , Perfilação da Expressão Gênica , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metabolômica , Camundongos , Fator 2 Relacionado a NF-E2/genética , Proteína Sequestossoma-1/genética
10.
Microorganisms ; 9(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804656

RESUMO

Antibiotics have improved survival from previously deadly infectious diseases. Antibiotics alter the microbial composition of the gut microbiota, and these changes are associated with diminished innate immunity and decline in cognitive function in older adults. The composition of the human microbiota changes with age over the human lifespan. In this pilot study, we sought to identify if age is associated with differential recovery of the microbiota after antibiotic exposure. Using 16S rRNA gene sequencing, we compared recovery of the gut microbiota after the 10-day broad-spectrum antibiotic treatment in wild-type C57BL/six young and older mice. Immediately after antibiotic cessation, as expected, the number of ASVs, representing taxonomic richness, in both young and older mice significantly declined from the baseline. Mice were followed up to 6 months after cessation of the single 10-day antibiotic regimen. The Bray-Curtis index recovered within 20 days after antibiotic cessation in young mice, whereas in older mice the microbiota did not fully recover during the 6-months of follow-up. Bifidobacterium, Dubosiella, Lachnospiraceae_NK4A136_group became dominant in older mice, whereas in young mice, the bacteria were more evenly distributed, with only one dominant genus of Anaeroplasma. From 45 genera that became extinct after antibiotic treatment in young mice, 31 (68.9%) did not recover by the end of the study. In older mice, from 36 extinct genera, 27 (75%) did not recover. The majority of the genera that became extinct and never recovered belonged to Firmicutes phylum and Clostridiales family. In our study, age was a factor associated with the long-term recovery of the gut microbiota after the 10-day antibiotic treatment.

11.
Adv Exp Med Biol ; 1278: 141-190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33523448

RESUMO

Mucosal surfaces are distinctive sites exposed to environmental, dietary, and microbial antigens. Particularly in the gut, the host continuously actively adapts via complex interactions between the microbiota and dietary compounds and immune and other tissue cells. Regulatory T cells (Tregs) are critical for tuning the intestinal immune response to self- and non-self-antigens in the intestine. Its importance in intestinal homeostasis is illustrated by the onset of overt inflammation caused by deficiency in Treg generation, function, or stability in the gut. A substantial imbalance in Tregs has been observed in intestinal tissue during pathogenic conditions, when a tightly regulated and equilibrated system becomes dysregulated and leads to unimpeded and chronic immune responses. In this chapter, we compile and critically discuss the current knowledge on the key factors that promote Treg-mediated tolerance in the gut, such as those involved in intestinal Treg differentiation, specificity and suppressive function, and their immunophenotype during health and disease. We also discuss the current state of knowledge on Treg dysregulation in human intestine during pathological states such as inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), graft-versus-host disease (GVHD), and colorectal cancer (CRC), and how that knowledge is guiding development of Treg-targeted therapies to treat or prevent intestinal disorders.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Tolerância Imunológica , Recém-Nascido , Inflamação , Mucosa Intestinal , Linfócitos T Reguladores
12.
Front Immunol ; 11: 580302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178208

RESUMO

Disabled-2 (DAB2) is a clathrin and cargo binding endocytic adaptor protein recognized for its multifaceted roles in signaling pathways involved in cellular differentiation, proliferation, migration, tumor suppression, and other fundamental homeostatic cellular mechanisms. The requirement for DAB2 in the canonical TGFß signaling in fibroblasts suggested that a similar mechanism may exist in immune cells and that DAB2 may contribute to immunological tolerance and suppression of inflammatory responses. In this review, we synthesize the current state of knowledge on the roles of DAB2 in the cells of the innate and adaptive immune system, with particular focus on antigen presenting cells (APCs; macrophages and dendritic cells) and regulatory T cells (Tregs). The emerging role of DAB2 in the immune system is that of an immunoregulatory molecule with significant roles in Treg-mediated immunosuppression, and suppression of TLR signaling in APC. DAB2 itself is downregulated by inflammatory stimuli, an event that likely contributes to the immunogenic function of APC. However, contrary findings have been described in neuroinflammatory disorders, thus suggesting a highly context-specific roles for DAB2 in immune cell regulation. There is need for better understanding of DAB2 regulation and its roles in different immune cells, their specialized sub-populations, and their responses under specific inflammatory conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Células Dendríticas/imunologia , Inflamação/imunologia , Linfócitos/imunologia , Linfócitos T Reguladores/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apresentação de Antígeno , Proteínas Reguladoras de Apoptose/genética , Humanos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
13.
Immunity ; 53(2): 398-416.e8, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814028

RESUMO

Paneth cells are the primary source of C-type lysozyme, a ß-1,4-N-acetylmuramoylhydrolase that enzymatically processes bacterial cell walls. Paneth cells are normally present in human cecum and ascending colon, but are rarely found in descending colon and rectum; Paneth cell metaplasia in this region and aberrant lysozyme production are hallmarks of inflammatory bowel disease (IBD) pathology. Here, we examined the impact of aberrant lysozyme production in colonic inflammation. Targeted disruption of Paneth cell lysozyme (Lyz1) protected mice from experimental colitis. Lyz1-deficiency diminished intestinal immune responses to bacterial molecular patterns and resulted in the expansion of lysozyme-sensitive mucolytic bacteria, including Ruminococcus gnavus, a Crohn's disease-associated pathobiont. Ectopic lysozyme production in colonic epithelium suppressed lysozyme-sensitive bacteria and exacerbated colitis. Transfer of R. gnavus into Lyz1-/- hosts elicited a type 2 immune response, causing epithelial reprograming and enhanced anti-colitogenic capacity. In contrast, in lysozyme-intact hosts, processed R. gnavus drove pro-inflammatory responses. Thus, Paneth cell lysozyme balances intestinal anti- and pro-inflammatory responses, with implications for IBD.


Assuntos
Clostridiales/imunologia , Colite Ulcerativa/patologia , Muramidase/genética , Muramidase/metabolismo , Celulas de Paneth/metabolismo , Animais , Clostridiales/genética , Colite Ulcerativa/microbiologia , Doença de Crohn/patologia , Feminino , Microbioma Gastrointestinal/genética , Células Caliciformes/citologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT6/genética
14.
JCI Insight ; 5(16)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686657

RESUMO

The regulatory mechanisms enabling the intestinal epithelium to maintain a high degree of regenerative capacity during mucosal injury remain unclear. Ex vivo survival and clonogenicity of intestinal stem cells (ISCs) strictly required growth response mediated by cell division control 42 (Cdc42) and Cdc42-deficient enteroids to undergo rapid apoptosis. Mechanistically, Cdc42 engaging with EGFR was required for EGF-stimulated, receptor-mediated endocytosis and sufficient to promote MAPK signaling. Proteomics and kinase analysis revealed that a physiologically, but nonconventionally, spliced Cdc42 variant 2 (V2) exhibited stronger MAPK-activating capability. Human CDC42-V2 is transcriptionally elevated in some colon tumor tissues. Accordingly, mice engineered to overexpress Cdc42-V2 in intestinal epithelium showed elevated MAPK signaling, enhanced regeneration, and reduced mucosal damage in response to irradiation. Overproducing Cdc42-V2 specifically in mouse ISCs enhanced intestinal regeneration following injury. Thus, the intrinsic Cdc42-MAPK program is required for intestinal epithelial regeneration, and elevating this signaling cascade is capable of initiating protection from genotoxic injury.


Assuntos
Receptores ErbB/metabolismo , Mucosa Intestinal/fisiologia , Regeneração/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Processamento Alternativo , Animais , Sobrevivência Celular , Endocitose/fisiologia , Células HEK293 , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Sistema de Sinalização das MAP Quinases , Camundongos Knockout , Camundongos Transgênicos , Proteína cdc42 de Ligação ao GTP/genética
15.
Gastroenterology ; 159(4): 1342-1356.e6, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32589883

RESUMO

BACKGROUND & AIMS: Intestinal epithelial cells (IECs) provide a barrier that separates the mucosal immune system from the luminal microbiota. IECs constitutively express low levels of major histocompatibility complex (MHC) class II proteins, which are upregulated upon exposure to interferon gamma. We investigated the effects of deleting MHCII proteins specifically in mice with infectious, dextran sodium sulfate (DSS)-, and T-cell-induced colitis. METHODS: We disrupted the histocompatibility 2, class II antigen A, beta 1 gene (H2-Ab1) in IECs of C57BL/6 mice (I-AbΔIEC) or Rag1-/- mice (Rag1-/-I-AbΔIEC); we used I-AbWT mice as controls. Colitis was induced by administration of DSS, transfer of CD4+CD45RBhi T cells, or infection with Citrobacter rodentium. Colon tissues were collected and analyzed by histology, immunofluorescence, xMAP, and reverse-transcription polymerase chain reaction and organoids were generated. Microbiota (total and immunoglobulin [Ig]A-coated) in intestinal samples were analyzed by16S amplicon profiling. IgA+CD138+ plasma cells from Peyer's patches and lamina propria were analyzed by flow cytometry and IgA repertoire was determined by next-generation sequencing. RESULTS: Mice with IEC-specific loss of MHCII (I-AbΔIEC mice) developed less severe DSS- or T-cell transfer-induced colitis than control mice. Intestinal tissues from I-AbΔIEC mice had a lower proportion of IgA-coated bacteria compared with control mice, and a reduced luminal concentration of secretory IgA (SIgA) following infection with C rodentium. There was no significant difference in the mucosal IgA repertoire of I-AbΔIEC vs control mice, but opsonization of cultured C rodentium by SIgA isolated from I-AbΔIEC mice was 50% lower than that of SIgA from mAbWT mice. Fifty percent of I-AbΔIEC mice died after infection with C rodentium, compared with none of the control mice. We observed a transient but significant expansion of the pathogen in the feces of I-AbΔIEC mice compared with I-AbWT mice. CONCLUSIONS: In mice with DSS or T-cell-induced colitis, loss of MHCII from IECs reduces but does not eliminate mucosal inflammation. However, in mice with C rodentium-induced colitis, loss of MHCII reduces bacterial clearance by decreasing binding of IgA to commensal and pathogenic bacteria.


Assuntos
Colite/etiologia , Colite/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Mucosa Intestinal/patologia , Animais , Colite/metabolismo , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
16.
Inflamm Bowel Dis ; 26(2): 229-241, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31559420

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a multifactorial disorder, with the innate and adaptive immune cells contributing to disease initiation and progression. However, the intricate cross-talk between immune cell lineages remains incompletely understood. The role of CD8+ T cells in IBD pathogenesis has been understudied, largely due to the lack of appropriate models. METHODS: We previously reported spontaneous colitis in mice with impaired TGFß signaling due to dendritic cell-specific knockout of TGFbR2 (TGFßR2ΔDC). Here, we demonstrate that crossing TGFßR2ΔDC mice with a Rag1-/- background eliminates all symptoms of colitis and that adoptive transfer of unfractionated CD3+ splenocytes is sufficient to induce progressive colitis in Rag1-/-TGFßR2ΔDC mice. RESULTS: Both CD4+ and CD8+ T cells are required for the induction of colitis accompanied by activation of both T-cell lineages and DCs, increased expression of mucosal IFNγ, TNFα, IL6, IL1ß, and IL12, and decreased frequencies of CD4+FoxP3+ regulatory T cells. Development of colitis required CD40L expression in CD4+ T cells, and the disease was partially ameliorated by IFNγ neutralization. CONCLUSIONS: This novel model provides an important tool for studying IBD pathogenesis, in particular the complex interactions among innate and adaptive immune cells in a controlled fashion, and represents a valuable tool for preclinical evaluation of novel therapeutics.


Assuntos
Complexo CD3/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Colite/etiologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Receptor do Fator de Crescimento Transformador beta Tipo II/fisiologia , Animais , Comunicação Celular , Colite/metabolismo , Colite/patologia , Feminino , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Linfócitos T Reguladores/imunologia
17.
Sci Rep ; 9(1): 15257, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649328

RESUMO

ZBTB32 is a transcription factor that is highly expressed by a subset of memory B cells and restrains the magnitude and duration of recall responses against hapten-protein conjugates. To define physiological contexts in which ZBTB32 acts, we assessed responses by Zbtb32-/- mice or bone marrow chimeras against a panel of chronic and acute challenges. Mixed bone marrow chimeras were established in which all B cells were derived from either Zbtb32-/- mice or control littermates. Chronic infection of Zbtb32-/- chimeras with murine cytomegalovirus led to nearly 20-fold higher antigen-specific IgG2b levels relative to controls by week 9 post-infection, despite similar viral loads. In contrast, IgA responses and specificities in the intestine, where memory B cells are repeatedly stimulated by commensal bacteria, were similar between Zbtb32-/- mice and control littermates. Finally, an infection and heterologous booster vaccination model revealed no role for ZBTB32 in restraining primary or recall antibody responses against influenza viruses. Thus, ZBTB32 does not limit recall responses to a number of physiological acute challenges, but does restrict antibody levels during chronic viral infections that periodically engage memory B cells. This restriction might selectively prevent recall responses against chronic infections from progressively overwhelming other antibody specificities.


Assuntos
Anticorpos Antivirais/imunologia , Células da Medula Óssea/metabolismo , Infecções por Herpesviridae/metabolismo , Muromegalovirus/imunologia , Proteínas Repressoras/metabolismo , Animais , Formação de Anticorpos , Células da Medula Óssea/imunologia , Infecções por Herpesviridae/imunologia , Memória Imunológica/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Repressoras/genética
18.
Inflamm Bowel Dis ; 25(12): 1919-1926, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31173626

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by chronic inflammation, which can progress to colorectal cancer, with duration of disease being the most important risk factor. Although many factors are involved, the pathogenic link between inflammation and cancer and the role played by the lymphatic system have not been fully investigated. This project uses lymphatic-deficient mice (Angiopoietin-2 [Ang2] knockout) to examine the lymphatic system in the progression of IBD to colorectal cancer. METHODS: Angiopoietin-2 wild-type, heterozygote, and knockout mice received a single injection of the procarcinogen azoxymethane and had an IBD-promoting chemical irritant (dextran sodium sulfate) added to their drinking water over a 7-week period. We measured disease activity (weight loss, stool consistency, fecal occult blood) during the study and at sacrifice, collected blood for cytokine/biomarker (Ang2, interleukin [IL] 1-ß, IL-6, tumor necrosis factor α [TNFα], and VEGF-C) enzyme-linked immunosorbent assay analysis, measured colon length, and assessed tumor burden. RESULTS: Ang2 knockout (KO) mice exhibited reduced (55%) survival vs wild-type (100%) and heterozygotes (91%; P < 0.01 and P < 0.0001, respectively). Most (>89%) mice developed tumors, and the incidence of colorectal cancer did not differ among the genotypes (P = 0.32). The tumor area was significantly increased in KO mice (P = 0.004). Of the biomarkers measured in the serum, Ang2 and TNF-α concentrations were significantly different among the genotypes (P = 3.35e-08 and P = 0.003 respectively). Disease activity was significantly increased in KO mice compared with wild-type and heterozygote mice (P = 0.033). CONCLUSIONS: Lymphatic deficiency, defective lymphangiogenesis, and impaired lymphatic-generated inflammation did not protect against clinical IBD or progression to colorectal cancer in this experimental model.


Assuntos
Angiopoietina-2/sangue , Neoplasias Colorretais/etiologia , Doenças Inflamatórias Intestinais/patologia , Linfangiogênese/genética , Fator de Necrose Tumoral alfa/sangue , Angiopoietina-2/genética , Animais , Azoximetano , Biomarcadores/sangue , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Progressão da Doença , Feminino , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Front Immunol ; 10: 304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873168

RESUMO

Dendritic cells (DCs) are pivotal in regulating tolerogenic as well as immunogenic responses against microorganisms by directing both the innate and adaptive immune response. In health, phenotypically different DC subsets found in the gut mucosa are maintained in their tolerogenic state but switch to a pro-inflammatory phenotype during infection or chronic autoinflammatory conditions such as inflammatory bowel disease (IBD). The mechanisms that promote the switch among the mucosal DCs from a tolerogenic to an immunogenic, pro-inflammatory phenotype are incompletely understood. We hypothesized that disabled homolog 2 (DAB2), recently described as a negative regulator of DC immunogenicity during their development, is regulated during intestinal inflammation and modulates mucosal DC function. We show that DAB2 is highly expressed in colonic CD11b+CD103- DCs, a subset known for its capacity to induce inflammatory Th1/Th17 responses in the colon, and is downregulated predominantly in this DC subset during adoptive T cell transfer colitis. Administration of Dab2-deficient DCs (DC2.4 Dab2-/- cells) modulated the course of DSS colitis in wild-type mice, enhanced mucosal expression of Tnfa, Il6, and Il17a, and promoted neutrophil recruitment. In bone-marrow derived dendritic cells (BMDC), DAB2 expression correlated with CD11b levels and DAB2 was rapidly and profoundly inhibited by TLR ligands in a TRIF- and MyD88-dependent manner. The negative modulation of DAB2 was biphasic, initiated with a quick drop in DAB2 protein, followed by a sustained reduction in Dab2 mRNA. DAB2 downregulation promoted a more functional and activated DC phenotype, reduced phagocytosis, and increased CD40 expression after TLR activation. Furthermore, Dab2 knockout in DCs inhibited autophagy and promoted apoptotic cell death. Collectively, our results highlight the immunoregulatory role for DAB2 in the intestinal dendritic cells and suggest that DAB2 downregulation after microbial exposure promotes their switch to an inflammatory phenotype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Reguladoras de Apoptose/imunologia , Células Dendríticas/imunologia , Receptores Toll-Like/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Colite/imunologia , Regulação para Baixo , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fagocitose
20.
J Crohns Colitis ; 13(1): 115-126, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252029

RESUMO

BACKGROUND: Broad-spectrum antibiotics [Abx], including combination therapy with ciprofloxacin and metronidazole, are often prescribed during the treatment of inflammatory bowel disease [IBD] to alleviate symptoms, but with varying success. In this pilot study, we studied the effects of Abx on the course of experimental colitis, with a particular focus on sex as a determinant of the microbial and inflammatory responses. METHODS: The effects of Abx were tested on colonic inflammation and microbiome in male and female Rag-/- mice, using adoptive transfer of naïve T cells to induce colitis in a short-term [2-week] and long-term [9-week] study. RESULTS: We observed disparities between the sexes in both the response to adoptive T cell transfer and the effects of Abx. At baseline without Abx, female mice displayed a trend toward a more severe colitis than males. In both the short- and the long-term experiments, gut microbiota of some female mice exposed to Abx showed weak, delayed, or negligible shifts. Caecum weight was significantly lower in Abx-treated females. Abx exposure favoured a quick and persistent rise in Enterococcaceae exclusively in females. Males had higher relative abundance of Lactobacillaceae following Abx exposure relative to females. Abx-treated females trended toward higher colitis scores than Abx-treated males, and towards higher levels of IL-17A, NOS2, and IL-22. CONCLUSIONS: Although preliminary, our results suggest a differential response to both inflammation and Abx between male and female mice, The findings may be relevant to current practice and also as the basis for further studies on the differential gender effects during long-term antibiotic exposure in IBD.


Assuntos
Transferência Adotiva , Antibacterianos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Colite/tratamento farmacológico , Colite/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fatores Sexuais , Animais , Linfócitos T CD4-Positivos/transplante , Ceco/patologia , Ciprofloxacina/farmacologia , Colite/genética , Colite/patologia , Proteínas de Ligação a DNA/genética , Enterococcaceae/efeitos dos fármacos , Enterococcaceae/crescimento & desenvolvimento , Feminino , Expressão Gênica/efeitos dos fármacos , Interleucina-17/genética , Interleucinas/genética , Lactobacillaceae/efeitos dos fármacos , Lactobacillaceae/crescimento & desenvolvimento , Masculino , Metronidazol/farmacologia , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Tamanho do Órgão , Projetos Piloto , RNA Mensageiro/metabolismo , Fatores de Tempo , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...