Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Huntingtons Dis ; 7(1): 61-76, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29480204

RESUMO

The threshold of CAG repeat expansion in the HTT gene that causes HD is 36 CAG repeats, although 'superlong' expansions are found in individual neurons in postmortem brains. Previously, we showed that, compared to mice with <250 CAG repeats, onset of disease in R6/2 mice carrying superlong (>440) CAG repeat expansions was delayed, and disease progression was slower. Inclusion pathology also differed from 250 CAG repeat mice, being dominated by a novel kind of extranuclear neuronal inclusion (nENNI) that resembles a class of aggregate seen in patients with the adult onset form of HD. Here, we characterised neuropathology in R6/2 mice with >400 CAG repeats using light and electron microscopy. nENNIs were found with increased frequency and wider distribution with age. Some nENNIs appear to 'mature' as the disease develops, developing a multi-layered cored structure. Mice with superlong CAG repeats do not develop clinical signs until they are around 30-40 weeks of age, and they attain a normal life span (>2 years). Nevertheless, they show brain atrophy and unequivocal neuron loss from the striatum and cortex by 22 weeks of age, an age at which similar pathology is seen in 250 CAG repeat mice. Since this time-point is 'end stage' for a 250 CAG mouse, but very far (at least 18 months) from end stage for a >  440 CAG repeat mouse, our data confirm that the appearance of clinical signs, the formation of inclusions, and neurodegeneration are processes that progress independently. A better understanding of the relationship between CAG repeat length, neurodegenerative pathways, and clinical behavioural signs is essential, if we are to find strategies to delay or reverse the course of this disease.


Assuntos
Doença de Huntington/genética , Longevidade/genética , Degeneração Neural/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Modelos Animais de Doenças , Proteína Huntingtina/genética , Camundongos , Atividade Motora/genética , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética
2.
PLoS One ; 7(7): e41450, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848498

RESUMO

Abnormal insoluble ubiqitinated protein aggregates are found in the brains of Huntington's disease (HD) patients and in mice transgenic for the HTT mutation. Here, we describe the earliest stages of visible NII formation in brains of R6/2 mice killed between 2 and 6 weeks of age. We found that huntingtin-positive aggregates formed rapidly (within 24-48 hours) in a spatiotemporal manner similar to that we described previously for ubiquitinated inclusions. However, in most neurons, aggregates are not ubiquitinated when they first form. It has always been assumed that mutant huntingtin is recognised as 'foreign' and consequently ubiquitinated and targeted for degradation by the ubiquitin-proteasome system pathway. Our data, however, suggest that aggregation and ubiquitination are separate processes, and that mutant huntingtin fragment is not recognized as 'abnormal' by the ubiquitin-proteasome system before aggregation. Rather, mutant Htt appears to aggregate before it is ubiquitinated, and then either aggregated huntingtin is ubiquitinated or ubiquitinated proteins are recruited into aggregates. Our findings have significant implications for the role of the ubiquitin-proteasome system in the formation of aggregates, as they suggest that this system is not involved until after the first aggregates form.


Assuntos
Doença de Huntington/metabolismo , Corpos de Inclusão/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Animais , Feminino , Doença de Huntington/genética , Doença de Huntington/patologia , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/genética
3.
PLoS One ; 7(2): e32636, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22393426

RESUMO

Complexins (Cplxs) are small, soluble, regulatory proteins that bind reversibly to the SNARE complex and modulate synaptic vesicle release. Cplx1 knockout mice (Cplx1(-/-)) have the earliest known onset of ataxia seen in a mouse model, although hitherto no histopathology has been described in these mice. Nevertheless, the profound neurological phenotype displayed by Cplx1(-/-) mutants suggests that significant functional abnormalities must be present in these animals. In this study, MRI was used to automatically detect regions where structural differences were not obvious when using a traditional histological approach. Tensor-based morphometry of Cplx1(-/-) mouse brains showed selective volume loss from the thalamus and cerebellum. Stereological analysis of Cplx1(-/-) and Cplx1(+/+) mice brain slices confirmed the volume loss in the thalamus as well as loss in some lobules of the cerebellum. Finally, stereology was used to show that there was loss of cerebellar granule cells in Cplx1(-/-) mice when compared to Cplx1(+/+) animals. Our study is the first to describe pathological changes in Cplx1(-/-) mouse brain. We suggest that the ataxia in Cplx1(-/-) mice is likely to be due to pathological changes in both cerebellum and thalamus. Reduced levels of Cplx proteins have been reported in brains of patients with neurodegenerative diseases. Therefore, understanding the effects of Cplx depletion in brains from Cplx1(-/-) mice may also shed light on the mechanisms underlying pathophysiology in disorders in which loss of Cplx1 occurs.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Cerebelo/metabolismo , Proteínas do Tecido Nervoso/genética , Tálamo/metabolismo , Animais , Atrofia , Mapeamento Encefálico , Hipertrofia , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neostriado/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Fenótipo , Isoformas de Proteínas
4.
Learn Mem ; 18(6): 375-83, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21597043

RESUMO

Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have deleted Irs2, either in the whole brain or selectively in the forebrain, using the nestin Cre- or D6 Cre-deleter mouse lines, respectively. We show that brain- and forebrain-specific Irs2 knockout mice have enhanced hippocampal spatial reference memory. Furthermore, NesCreIrs2KO mice have enhanced spatial working memory and contextual- and cued-fear memory. Deletion of Irs2 in the brain also increases PSD-95 expression and the density of dendritic spines in hippocampal area CA1, possibly reflecting an increase in the number of excitatory synapses per neuron in the hippocampus that can become activated during memory formation. This increase in activated excitatory synapses might underlie the improved hippocampal memory formation observed in NesCreIrs2KO mice. Overall, these results suggest that Irs2 acts as a negative regulator on memory formation by restricting dendritic spine generation.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Memória/fisiologia , Análise de Variância , Animais , Condicionamento Psicológico/fisiologia , Espinhas Dendríticas/ultraestrutura , Proteína 4 Homóloga a Disks-Large , Comportamento Exploratório/fisiologia , Medo , Guanilato Quinases/metabolismo , Hipocampo/citologia , Proteínas Substratos do Receptor de Insulina/deficiência , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Teste de Desempenho do Rota-Rod/métodos , Deleção de Sequência/genética
5.
Hum Mol Genet ; 18(21): 4066-80, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19640925

RESUMO

Neuronal ceroid lipofuscinoses (NCLs; Batten disease) are collectively the most frequent autosomal-recessive neurodegenerative disease of childhood, but the underlying cellular and molecular mechanisms remain unclear. Several lines of evidence have highlighted the important role that non-somatic compartments of neurons (axons and synapses) play in the instigation and progression of NCL pathogenesis. Here, we report a progressive breakdown of axons and synapses in the brains of two different mouse models of NCL: Ppt1(-/-) model of infantile NCL and Cln6(nclf) model of variant late-infantile NCL. Synaptic pathology was evident in the thalamus and cortex of these mice, but occurred much earlier within the thalamus. Quantitative comparisons of expression levels for a subset of proteins previously implicated in regulation of axonal and synaptic vulnerability revealed changes in proteins involved with synaptic function/stability and cell-cycle regulation in both strains of NCL mice. Protein expression changes were present at pre/early-symptomatic stages, occurring in advance of morphologically detectable synaptic or axonal pathology and again displayed regional selectivity, occurring first within the thalamus and only later in the cortex. Although significant differences in individual protein expression profiles existed between the two NCL models studied, 2 of the 15 proteins examined (VDAC1 and Pttg1) displayed robust and significant changes at pre/early-symptomatic time-points in both models. Our study demonstrates that synapses and axons are important early pathological targets in the NCLs and has identified two proteins, VDAC1 and Pttg1, with the potential for use as in vivo biomarkers of pre/early-symptomatic axonal and synaptic vulnerability in the NCLs.


Assuntos
Axônios/metabolismo , Modelos Animais de Doenças , Lipofuscinoses Ceroides Neuronais/genética , Sinapses/metabolismo , Animais , Axônios/patologia , Western Blotting , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Humanos , Imuno-Histoquímica , Lactente , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Securina , Sinapses/patologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Tálamo/metabolismo , Tálamo/patologia , Tioléster Hidrolases/deficiência , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Fatores de Tempo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
6.
Exp Neurol ; 217(1): 124-35, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19416667

RESUMO

Infantile neuronal ceroid lipofuscinosis (INCL, Infantile Batten Disease) is an inherited, neurodegenerative lysosomal storage disorder. INCL is the result of a CLN1 gene mutation leading to a deficiency in palmitoyl protein thioesterase 1 (PPT1) activity. Studies in the forebrain demonstrate the PPT1-deficient mouse (PPT1-/-) mimics the clinical symptoms and underlying pathology of INCL; however, little is known about changes in cerebellar function or pathology. In this study, we demonstrate Purkinje cell loss beginning at 3 months, which correlates with changes in rotarod performance. Concurrently, we observed an early stage reactive gliosis and a primary pathology in astrocytes, including changes in S100beta and GLAST expression. Conversely, there was a late stage granule cell loss, microglial activation, and demyelination. This study suggests that neuronal-glial interactions are the core pathology in the PPT1-/- cerebellum. In addition, these data identify potential endpoints for use in future efficacy studies for the treatment of INCL.


Assuntos
Cerebelo/patologia , Cerebelo/fisiopatologia , Transtornos dos Movimentos/genética , Tioléster Hidrolases/deficiência , Fatores Etários , Animais , Apoptose/genética , Astrócitos/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Marcação In Situ das Extremidades Cortadas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Atividade Motora/genética , Transtornos dos Movimentos/fisiopatologia , Degeneração Neural/patologia , Fatores de Crescimento Neural/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Tamanho do Órgão/genética , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Coloração e Rotulagem/métodos
7.
Neurobiol Dis ; 34(2): 308-19, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19385065

RESUMO

Finnish variant LINCL (vLINCL(Fin)) is the result of mutations in the CLN5 gene. To gain insights into the pathological staging of this fatal pediatric disorder, we have undertaken a stereological analysis of the CNS of Cln5 deficient mice (Cln5-/-) at different stages of disease progression. Consistent with human vLINCL(Fin), these Cln5-/- mice displayed a relatively late onset regional atrophy and generalized cortical thinning and synaptic pathology, preceded by early and localized glial responses within the thalamocortical system. However, in marked contrast to other forms of NCL, neuron loss in Cln5-/- mice began in the cortex and only subsequently occurred within thalamic relay nuclei. Nevertheless, as in other NCL mouse models, this progressive thalamocortical neuron loss was still most pronounced within the visual system. These data provide unexpected evidence for a distinctive sequence of neuron loss in the thalamocortical system of Cln5-/- mice, diametrically opposed to that seen in other forms of NCL.


Assuntos
Córtex Cerebral/patologia , Predisposição Genética para Doença/genética , Glicoproteínas de Membrana/genética , Degeneração Neural/patologia , Lipofuscinoses Ceroides Neuronais/patologia , Tálamo/patologia , Idade de Início , Animais , Atrofia/genética , Atrofia/patologia , Atrofia/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Finlândia , Proteínas de Membrana Lisossomal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Tálamo/metabolismo , Tálamo/fisiopatologia , Vias Visuais/metabolismo , Vias Visuais/patologia , Vias Visuais/fisiopatologia
8.
J Neuropathol Exp Neurol ; 67(1): 16-29, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18091563

RESUMO

Cathepsin D (CTSD; EC 3.4.23.5) is a lysosomal aspartic protease, the deficiency of which causes early-onset and particularly aggressive forms of neuronal ceroid-lipofuscinosis in infants, sheep, and mice. Cathepsin D deficiencies are characterized by severe neurodegeneration, but the molecular mechanisms behind the neuronal death remain poorly understood. In this study, we have systematically mapped the distribution of neuropathologic changes in CTSD-deficient mouse brains by stereologic, immunologic, and electron microscopic methods. We report highly accentuated neuropathologic changes within the ventral posterior nucleus (ventral posteromedial [VPM]/ventral posterolateral [VPL]) of thalamus and in neuronal laminae IV and VI of the somatosensory cortex (S1BF), which receive and send information to the thalamic VPM/VPL. These changes included pronounced astrocytosis and microglial activation that begin in the VPM/VPL thalamic nucleus of CTSD-deficient mice and are associated with reduced neuronal number and redistribution of presynaptic markers. In addition, loss of synapses, axonal pathology, and aggregation of synaptophysin and synaptobrevin were observed in the VPM/VPL. These synaptic alterations are accompanied by changes in the amount of synaptophysin/synaptobrevin heterodimer, which regulates formation of the SNARE complex at the synapse. Taken together, these data reveal the somatosensory thalamocortical circuitry as a particular focus of pathologic changes and provide the first evidence for synaptic alterations at the molecular and ultrastructural levels in CTSD deficiency.


Assuntos
Catepsina D/deficiência , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Córtex Somatossensorial/patologia , Sinapses/fisiologia , Tálamo/patologia , Animais , Antígenos de Diferenciação/metabolismo , Atrofia/etiologia , Encéfalo/patologia , Morte Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/patologia , Lipofuscinoses Ceroides Neuronais/complicações , Neurônios/metabolismo , Sinapses/patologia , Sinapses/ultraestrutura
9.
Neurobiol Dis ; 25(1): 150-62, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17046272

RESUMO

Infantile neuronal ceroid lipofuscinosis (INCL) is caused by deficiency of the lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1). We have investigated the onset and progression of pathological changes in Ppt1 deficient mice (Ppt1-/-) and the development of their seizure phenotype. Surprisingly, cortical atrophy and neuron loss occurred only late in disease progression but were preceded by localized astrocytosis within individual thalamic nuclei and the progressive loss of thalamic neurons that relay different sensory modalities to the cortex. This thalamic neuron loss occurred first within the visual system and only subsequently in auditory and somatosensory relay nuclei or the inhibitory reticular thalamic nucleus. The loss of granule neurons and GABAergic interneurons followed in each corresponding cortical region, before the onset of seizure activity. These findings provide novel evidence for successive neuron loss within the thalamus and cortex in Ppt1-/- mice, revealing the thalamus as an important early focus of INCL pathogenesis.


Assuntos
Córtex Cerebral/patologia , Lipofuscinoses Ceroides Neuronais/patologia , Neurônios/patologia , Tálamo/patologia , Tioléster Hidrolases/fisiologia , Envelhecimento/patologia , Animais , Astrócitos/patologia , Atrofia/patologia , Modelos Animais de Doenças , Progressão da Doença , Eletroencefalografia , Gliose/patologia , Interneurônios/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Neuroglia/patologia , Fenótipo , Convulsões/etiologia , Sinapses/patologia , Núcleos Talâmicos/patologia , Tioléster Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...