Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(4): 043705, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489929

RESUMO

The continuous increase in storage densities and the desire for quantum memories and computers push the limits of magnetic characterization techniques. Ultimately, a tool that is capable of coherently manipulating and detecting individual quantum spins is needed. Scanning tunneling microscopy (STM) is the only technique that unites the prerequisites of high spatial and energy resolution, low temperature, and high magnetic fields to achieve this goal. Limitations in the available frequency range for electron spin resonance STM (ESR-STM) mean that many instruments operate in the thermal noise regime. We resolve challenges in signal delivery to extend the operational frequency range of ESR-STM by more than a factor of two and up to 100 GHz, making the Zeeman energy the dominant energy scale at achievable cryogenic temperatures of a few hundred millikelvin. We present a general method for augmenting existing instruments into ESR-STM to investigate spin dynamics in the high-field limit. We demonstrate the performance of the instrument by analyzing inelastic tunneling in a junction driven by a microwave signal and provide proof of principle measurements for ESR-STM.

2.
Micromachines (Basel) ; 12(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805232

RESUMO

We present a fabrication technology for nanoscale superconducting quantum interference devices (SQUIDs) with overdamped superconductor-normal metal-superconductor (SNS) trilayer Nb/HfTi/Nb Josephson junctions. A combination of electron-beam lithography with chemical-mechanical polishing and magnetron sputtering on thermally oxidized Si wafers is used to produce direct current SQUIDs with 100-nm-lateral dimensions for Nb lines and junctions. We extended the process from originally two to three independent Nb layers. This extension offers the possibility to realize superconducting vias to all Nb layers without the HfTi barrier, and hence to increase the density and complexity of circuit structures. We present results on the yield of this process and measurements of SQUID characteristics.

3.
ACS Nano ; 10(9): 8308-15, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27332709

RESUMO

We present the design, realization, and performance of a three-axis vector nano superconducting quantum interference device (nanoSQUID). It consists of three mutually orthogonal SQUID nanoloops that allow distinguishing the three components of the vector magnetic moment of individual nanoparticles placed at a specific position. The device is based on Nb/HfTi/Nb Josephson junctions and exhibits line widths of ∼250 nm and inner loop areas of 600 × 90 and 500 × 500 nm(2). Operation at temperature T = 4.2 K under external magnetic fields perpendicular to the substrate plane up to ∼50 mT is demonstrated. The experimental flux noise below [Formula: see text] in the white noise limit and the reduced dimensions lead to a total calculated spin sensitivity of [Formula: see text] and [Formula: see text] for the in-plane and out-of-plane components of the vector magnetic moment, respectively. The potential of the device for studying three-dimensional properties of individual nanomagnets is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...