Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39057204

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), is a highly complex zoonosis that is present throughout South America, Central America, and Mexico. The transmission of this disease is influenced by various factors, including human activities like deforestation and land use changes, which may have altered the natural transmission cycles and their connection to the environment. In this study conducted in the Argentine Chaco region, we examined the transmission dynamics of T. cruzi by collecting blood samples from wild and domestic animals, as well as triatomine bugs from human dwellings, across five sites of varying anthropic intervention. Samples were analyzed for T. cruzi infection via qPCR, and we additionally examined triatomines for bloodmeal analysis via NGS amplicon sequencing. Our analysis revealed a 15.3% infection rate among 20 wild species (n = 123) and no T. cruzi presence in 9 species of domestic animals (n = 1359) or collected triatomines via qPCR. Additionally, we found chicken (34.28%), human (21.59%), and goat (19.36%) as the predominant bloodmeal sources across all sites. These findings suggest that anthropic intervention and other variables analyzed may have directly impacted the spillover dynamics of T. cruzi's sylvatic cycle and potentially reduced its prevalence in human habitats.

2.
Emerg Microbes Infect ; 13(1): 2332667, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38494746

RESUMO

Clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses have caused large outbreaks within avian populations on five continents, with concurrent spillover into a variety of mammalian species. Mutations associated with mammalian adaptation have been sporadically identified in avian isolates, and more frequently among mammalian isolates following infection. Reports of human infection with A(H5N1) viruses following contact with infected wildlife have been reported on multiple continents, highlighting the need for pandemic risk assessment of these viruses. In this study, the pathogenicity and transmissibility of A/Chile/25945/2023 HPAI A(H5N1) virus, a novel reassortant with four gene segments (PB1, PB2, NP, MP) from North American lineage, isolated from a severe human case in Chile, was evaluated in vitro and using the ferret model. This virus possessed a high capacity to cause fatal disease, characterized by high morbidity and extrapulmonary spread in virus-inoculated ferrets. The virus was capable of transmission to naïve contacts in a direct contact setting, with contact animals similarly exhibiting severe disease, but did not exhibit productive transmission in respiratory droplet or fomite transmission models. Our results indicate that the virus would need to acquire an airborne transmissible phenotype in mammals to potentially cause a pandemic. Nonetheless, this work warrants continuous monitoring of mammalian adaptations in avian viruses, especially in strains isolated from humans, to aid pandemic preparedness efforts.


Assuntos
Furões , Virus da Influenza A Subtipo H5N1 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Furões/virologia , Humanos , Chile , Influenza Humana/virologia , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , Vírus Reordenados/classificação , Filogenia , Influenza Aviária/virologia , Influenza Aviária/transmissão
3.
Infect Genet Evol ; 84: 104369, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32442632

RESUMO

Rhodnius pallescens is the principal vector of Chagas disease in Panama. Recently a dark chromatic morph has been discovered in the highlands of Veraguas Province. Limited genetic studies have been conducted with regards to the population structure and dispersal potential of Triatominae vectors, particularly in R. pallescens. Next generation sequencing methods such as RADseq and complete mitochondrial DNA (mtDNA) genome sequencing have great potential for examining vector biology across space and time. Here we utilize a RADseq method (3RAD), along with complete mtDNA sequencing, to examine the population structure of the two chromatic morpho types of R. pallescens in Panama. We sequenced 105 R. pallescens samples from five localities in Panama. We generated a 2216 SNP dataset and 6 complete mtDNA genomes. RADseq showed significant differentiation among the five localities (FCT = 0.695; P = .004), but most of this was between localities with the dark vs. light chromatic morphs (Veraguas vs. Panama Oeste). The mtDNA genomes showed a 97-98% similarity between dark and light chromatic morphs across all genes and a 502 bp insert in light morphs. Thus, both the RADseq and mtDNA data showed highly differentiated clades with essentially no gene flow between the dark and light chromatic morphs from Veraguas and central Panama respectively. We discuss the growing evidence showing clear distinctions between these two morpho types with the possibility that these are separate species, an area of research that requires further investigation. Finally, we discuss the cost-effectiveness of 3RAD which is a third of the cost compared to other RADseq methods used recently in Chagas disease vector research.


Assuntos
Doença de Chagas/transmissão , Genética Populacional , Insetos Vetores/genética , Rhodnius/genética , Migração Animal , Animais , Variação Genética , Genoma Mitocondrial , Heterozigoto , Insetos Vetores/parasitologia , Panamá , Polimorfismo de Nucleotídeo Único , Rhodnius/parasitologia , Trypanosoma cruzi/genética
4.
Infect Genet Evol ; 84: 104373, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32454247

RESUMO

Triatominae is a subfamily of blood-sucking reduviid hemipterans of public health importance primarily in tropical and sub-tropical regions of the Americas, whose members possess various morphological adaptations closely associated to hematophagy. Despite their medical importance, the systematics of the subfamily is far from resolved, particularly within the tribe Triatomini. Here we employed mitochondrial genome DNA sequences to reconstruct the phylogenetic relationships among 19 species of the North-Central American (NCA) clade of Triatomini and to estimate the times of origin and diversification of its main clades. Twenty-nine mitogenomes were examined for representative specimens of 25 species, including the outgroup. Phylogenetic informativeness estimated for each protein-coding gene showed that cox1, cox2 and atp6 were the most informative markers, whereas atp8 and nad4 had high saturation levels. Phylogenetic analyses excluding the latter two protein-coding genes recovered an almost fully resolved topology. The NCA clade apparently originated shortly after emergence of an initial land bridge of the Panama Isthmus, ca. 15.05-20.05 Mya. An Asian/pantropical subclade with Linshcosteus costalis, Triatoma rubrofasciata and T. migrans was nested within the NCA clade, from which it diverged ca. 12.42-17.3Mya. Uncorrected cox1 and 13 protein-coding gene distances suggest the existence of additional species within the dimidiata complex. In contrast, T. phyllosoma, T. mazzottii and T. longipennis, from the phyllosoma complex, have considerably low cox1 and 13 PCG distances among them, suggesting mitochondrial introgression or conspecificity. Our study yielded a robust phylogeny for the group, which could be tested with further phylogenetic hypotheses based on nuclear genome-wide markers.


Assuntos
Genoma Mitocondrial , Filogenia , Triatominae/genética , Animais , DNA Mitocondrial , Proteínas de Insetos/genética , Triatoma/genética
5.
Parasit Vectors ; 12(1): 504, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665056

RESUMO

BACKGROUND: Triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, which causes Chagas disease. Rhodnius pallescens is a major vector of Chagas disease in Panama. Understanding the microbial ecology of disease vectors is important in the development of vector management strategies that target vector survival and fitness. In this study we examined the whole-body microbial composition of R. pallescens from three locations in Panama. METHODS: We collected 89 R. pallescens specimens using Noireau traps in Attalea butyracea palms. We then extracted total DNA from whole-bodies of specimens and amplified bacterial microbiota using 16S rRNA metabarcoding PCR. The 16S libraries were sequenced on an Illumina MiSeq and analyzed using QIIME2 software. RESULTS: We found Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes to be the most abundant bacterial phyla across all samples. Geographical location showed the largest difference in microbial composition with northern Veraguas Province having the most diversity and Panama Oeste Province localities being most similar to each other. Wolbachia was detected in high abundance (48-72%) at Panama Oeste area localities with a complete absence of detection in Veraguas Province. No significant differences in microbial composition were detected between triatomine age class, primary blood meal source, or T. cruzi infection status. CONCLUSIONS: We found biogeographical regions differ in microbial composition among R. pallescens populations in Panama. While overall the microbiota has bacterial taxa consistent with previous studies in triatomine microbial ecology, locality differences are an important observation for future studies. Geographical heterogeneity in microbiomes of vectors is an important consideration for future developments that leverage microbiomes for disease control.


Assuntos
Bactérias/classificação , Doença de Chagas/transmissão , Insetos Vetores/microbiologia , Microbiota , Rhodnius/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Análise de Variância , Animais , Bactérias/genética , Bacteroidetes/classificação , Bacteroidetes/genética , Biodiversidade , Código de Barras de DNA Taxonômico , Ecossistema , Firmicutes/classificação , Firmicutes/genética , Biblioteca Gênica , Humanos , Insetos Vetores/fisiologia , Panamá , Filogeografia , Reação em Cadeia da Polimerase , Proteobactérias/classificação , Proteobactérias/genética , RNA Ribossômico 16S/química , Rhodnius/fisiologia
6.
Parasit Vectors ; 12(1): 274, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138275

RESUMO

BACKGROUND: Oil palm plantation establishment in Colombia has the potential to impact Chagas disease transmission by increasing the distribution range of Rhodnius prolixus. In fact, previous studies have reported Trypanosoma cruzi natural infection in R. prolixus captured in oil palms (Elaeis guineensis) in the Orinoco region, Colombia. The aim of this study is to understand T. cruzi infection in vectors in oil palm plantations relative to community composition and host dietary specialization by analyzing vector blood meals and comparing these results to vectors captured in a native palm tree species, Attalea butyracea. METHODS: Rhodnius prolixus nymphs (n = 316) were collected from A. butyracea and E. guineensis palms in Tauramena, Casanare, Colombia. Vector blood meals from these nymphs were determined by amplifying and sequencing a vertebrate-specific 12S rRNA gene fragment. RESULTS: Eighteen vertebrate species were identified and pigs (Sus scrofa) made up the highest proportion of blood meals in both habitats, followed by house mouse (Mus musculus) and opossum (Didelphis marsupialis). Individual bugs feeding only from generalist mammal species had the highest predicted vector infection rate, suggesting that generalist mammalian species are more competent hosts for T. cruzi infection . CONCLUSIONS: Oil palm plantations and A. butyracea palms found in altered areas provide a similar quality habitat for R. prolixus populations in terms of blood meal availability. Both habitats showed similarities in vector infection rate and potential host species, representing a single T. cruzi transmission scenario at the introduced oil palm plantation and native Attalea palm interface.


Assuntos
Agricultura , Doença de Chagas/transmissão , Insetos Vetores/parasitologia , Rhodnius/fisiologia , Árvores , Trypanosoma cruzi/isolamento & purificação , Animais , Sangue , Colômbia , Didelphis , Ecossistema , Especificidade de Hospedeiro , Insetos Vetores/fisiologia , Camundongos , Óleo de Palmeira , Rhodnius/parasitologia , Suínos
7.
J Med Entomol ; 54(6): 1786-1789, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29029145

RESUMO

Accurate blood meal identification is critical to understand hematophagous vector-host relationships. This study describes a customizable Next-Generation Sequencing (NGS) approach to identify blood meals from Rhodnius pallescens (Hemiptera: Reduviidae) triatomines using multiple barcoded primers and existing software to pick operational taxonomic units and match sequences for blood meal identification. We precisely identified all positive control samples using this method and further examined 74 wild-caught R. pallescens samples. With this novel blood meal identification method, we detected 13 vertebrate species in the blood meals, as well as single and multiple blood meals in individual bugs. Our results demonstrate the reliability and descriptive uses of our method.


Assuntos
Insetos Vetores , Rhodnius , Animais , Bovinos , Doença de Chagas/transmissão , Cães , Comportamento Alimentar , Mamíferos , Camundongos , Panamá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA