Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 105(2): 89-99, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20549356

RESUMO

Regulation of light harvesting in response to changes in light intensity, CO(2) and O(2) concentration was studied in C(4) species representing three different metabolic subtypes: Sorghum bicolor (NADP-malic enzyme), Amaranthus edulis (NAD-malic enzyme), and Panicum texanum (PEP-carboxykinase). Several photosynthetic parameters were measured on the intact leaf level including CO(2) assimilation rates, O(2) evolution, photosystem II activities, thylakoid proton circuit and dissipation of excitation energy. Gross rates of O(2) evolution (J(O)2'), measured by analysis of chlorophyll fluorescence), net rates of O(2) evolution and CO(2) assimilation responded in parallel to changes in light and CO(2) levels. The C(4) subtypes had similar energy requirements for photosynthesis since there were no significant differences in maximal quantum efficiencies for gross rates of O(2) evolution (average value = 0.072 O(2)/quanta absorbed, approximately 14 quanta per O(2) evolved). At saturating actinic light intensities, when photosynthesis was suppressed by decreasing CO(2), ATP synthase proton conductivity (g (H) (+)) responded strongly to changes in electron flow, decreasing linearly with J(O)2', which was previously observed in C(3) plants. It is proposed that g (H) (+) is controlled at the substrate level by inorganic phosphate availability. The results suggest development of nonphotochemical quenching in C(4) plants is controlled by a decrease in g (H) (+), which causes an increase in proton motive force by restricting proton efflux from the lumen, rather than by cyclic or pseudocyclic electron flow.


Assuntos
Amaranthus/metabolismo , Carbono/metabolismo , Escuridão , Luz , Panicum/metabolismo , Sorghum/metabolismo , Amaranthus/efeitos da radiação , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Panicum/efeitos da radiação , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Sorghum/efeitos da radiação , Especificidade da Espécie
2.
Funct Plant Biol ; 36(11): 893-901, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32688700

RESUMO

It was previously shown that photosynthetic electron transfer is controlled under low CO2 via regulation of the chloroplast ATP synthase. In the current work, we studied the regulation of photosynthesis under feedback limiting conditions, where photosynthesis is limited by the capacity to utilise triose-phosphate for synthesis of end products (starch or sucrose), in a starch-deficient mutant of Nicotiana sylvestris Speg. & Comes. At high CO2, we observed feedback control that was progressively reversed by increasing O2 levels from 2 to 40%. The activity of the ATP synthase, probed in vivo by the dark-interval relaxation kinetics of the electrochromic shift, was proportional to the O2-induced increases in O2 evolution from PSII (JO2), as well as the sum of Rubisco oxygenation (vo) and carboxylation (vc) rates. The altered ATP synthase activity led to changes in the light-driven proton motive force, resulting in regulation of the rate of plastoquinol oxidation at the cytochrome b6f complex, quantitatively accounting for the observed control of photosynthetic electron transfer. The ATP content of the cell decreases under feedback limitation, suggesting that the ATP synthesis was downregulated to a larger extent than ATP consumption. This likely resulted in slowing of ribulose bisphosphate regeneration and JO2). Overall, our results indicate that, just as at low CO2, feedback limitations control the light reactions of photosynthesis via regulation of the ATP synthase, and can be reconciled with regulation via stromal Pi, or an unknown allosteric affector.

3.
J Exp Bot ; 59(7): 1715-34, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18390850

RESUMO

Among dicotyledon families, Chenopodiaceae has the most C(4) species and the greatest diversity in structural forms of C(4). In subfamily Salicornioideae, C(4) photosynthesis has, so far, only been found in the genus Halosarcia which is now included in the broadly circumscribed Tecticornia. Comparative anatomical, cytochemical, and physiological studies on these taxa, which have near-aphyllous photosynthetic shoots, show that T. pergranulata is C(3), and that two subspecies of T. indica (bidens and indica) are C(4) (Kranz-tecticornoid type). In T. pergranulata, the stems have two layers of chlorenchyma cells surrounding the centrally located water storage tissue. The two subspecies of T. indica have Kranz anatomy in reduced leaves and in the fleshy stem cortex. They are NAD-malic enzyme-type C(4) species, with mesophyll chloroplasts having reduced grana, characteristic of this subtype. The Kranz-tecticornoid-type anatomy is unique among C(4) types in the family in having groups of chlorenchymatous cells separated by a network of large colourless cells (which may provide mechanical support or optimize the distribution of radiation in the tissue), and in having peripheral vascular bundles with the phloem side facing the bundle sheath cells. Also, the bundle sheath cells have chloroplasts in a centrifugal position, which is atypical for C(4) dicots. Fluorescence analyses in fresh sections indicate that all non-lignified cell walls have ferulic acid, a cell wall cross-linker. Structural-functional relationships of C(4) photosynthesis in T. indica are discussed. Recent molecular studies show that the C(4) taxa in Tecticornia form a monophyletic group, with incorporation of the Australian endemic genera of Salicornioideae, including Halosarcia, Pachycornia, Sclerostegia, and Tegicornia, into Tecticornia.


Assuntos
Chenopodiaceae/fisiologia , Fotossíntese/fisiologia , Carbono/metabolismo , Parede Celular , Imuno-Histoquímica , Epiderme Vegetal/anatomia & histologia , Caules de Planta/citologia , Caules de Planta/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Amido/metabolismo
4.
Funct Plant Biol ; 34(4): 268-281, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-32689353

RESUMO

Leaves and cotyledons of the terrestrial C4 plants, Bienertia cycloptera Bunge ex Boiss. and Suaeda aralocaspica (Bunge) Freitag & Schütze (Chenopodiaceae), accomplish C4 photosynthesis within individual chlorenchyma cells: each species having a unique means of intracellular spatial partitioning of biochemistry and organelles. In this study the chlorenchyma tissue in flowers and stems of these species was investigated. Flowers have an outer whorl of green tepals with a layer of chlorenchyma cells, which are located on the abaxial side, exposed to the atmosphere. Anatomical, immunocytochemical, western blots and starch analyses show that the chlorenchyma cells in tepals are specialised for performance of single-cell C4 photosynthesis like that in leaves. In the tepals of B. cycloptera, chlorenchyma cells have a distinctive central cytoplasmic compartment, with chloroplasts which contain Rubisco, separated by cytoplasmic channels from a peripheral chloroplast-containing compartment, with phosphoenolpyruvate carboxylase (PEPC) distributed throughout the cytoplasm. In the tepals of S. aralocaspica, chlorenchyma cells have chloroplasts polarised towards opposite ends of the cells. Rubisco is found in chloroplasts towards the proximal end of the cell and PEPC is found throughout the cytoplasm. Also, green stems of B. cycloptera have a single layer of the specialised C4 type chlorenchyma cells beneath the epidermis, and in stems of S. aralocaspica, chlorenchyma cells are scattered throughout the cortical tissue with chloroplasts around their periphery, typical of C3 type chlorenchyma. During reproductive development, green flowers become very conspicuous, and their photosynthesis is suggested to be important in completion of the life cycle of these single-cell C4 functioning species.

5.
Funct Plant Biol ; 34(4): 382-391, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-32689365

RESUMO

In celery, mannitol is a primary photosynthetic product that is associated with celery's exceptional salt tolerance. Arabidopsis plants transformed with celery's mannose-6-phosphate reductase (M6PR) gene produce mannitol and grow normally in the absence of stress. Daily analysis of the increase in growth (fresh and dry weight, leaf number, leaf area per plant and specific leaf weight) over a 12-day period showed less effect of salt (100 mm NaCl) on the M2 transformant than wild type (WT). Following a 12-day treatment of WT, M2 and M5 plants with 100 or 200 mm NaCl the total shoot fresh weight, leaf number, and leaf area were significantly greater in transformants than in WT plants. The efficiency of use of energy for photochemistry by PSII was measured daily under growth conditions. In WT plants treated with 100 mm NaCl, the PSII yield begin decreasing after 6 days with a 50% loss in yield after 12 days, indicating a severe loss in PSII efficiency; whereas, there was no effect on the transformants. Under atmospheric levels of CO2, growth with 200 mm NaCl caused an increase in the substomatal levels of CO2 in WT plants but not in transformants. It also caused a marked decrease in carboxylation efficiency under limiting levels of CO2 in WT compared with transformants. When stress was imposed and growth reduced by withholding water for 12 days, which resulted in a similar decrease in relative water content to salt-treated plants, there were no differences among the genotypes in PSII yields or growth. The results suggest mannitol, which is known to be a compatible solute and antioxidant, protects photosynthesis against salt-related damage to chloroplasts.

6.
Photosynth Res ; 79(2): 209, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16228395

RESUMO

A number of useful photosynthetic parameters are commonly derived from saturation pulse-induced fluorescence analysis. We show, that qP, an estimate of the fraction of open centers, is based on a pure 'puddle' antenna model, where each Photosystem (PS) II center possesses its own independent antenna system. This parameter is incompatible with more realistic models of the photosynthetic unit, where reaction centers are connected by shared antenna, that is, the so-called 'lake' or 'connected units' models. We thus introduce a new parameter, qL, based on a Stern-Volmer approach using a lake model, which estimates the fraction of open PS II centers. We suggest that qL should be a useful parameter for terrestrial plants consistent with a high connectivity of PS II units, whereas some marine species with distinct antenna architecture, may require the use of more complex parameters based on intermediate models of the photosynthetic unit. Another useful parameter calculated from fluorescence analysis is ΦII, the yield of PS II. In contrast to qL, we show that the ΦII parameter can be derived from either a pure 'lake' or pure 'puddle' model, and is thus likely to be a robust parameter. The energy absorbed by PS II is divided between the fraction used in photochemistry, ΦII, and that lost non-photochemically. We introduce two additional parameters that can be used to estimate the flux of excitation energy into competing non-photochemical pathways, the yield induced by downregulatory processes, ΦNPQ, and the yield for other energy losses, ΦNO.

7.
Am J Bot ; 90(12): 1669-80, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21653343

RESUMO

The terrestrial plant Borszczowia aralocaspica (Chenopodiaceae) has recently been shown to contain the entire C(4) photosynthesis mechanism within individual, structurally and biochemically polarized chlorenchyma cells rather than in a dual cell system, as has been the paradigm for this type of carbon fixation (Nature 414: 543-546, 2001). Analysis of carbon isotope composition and (14)CO(2) fixation shows that photosynthesis and growth of B. aralocaspica occurs through carbon acquired by C(4) photosynthesis. The development of this unique single-cell C(4) system in chlorenchyma cells was studied by analysis of young (0.2-0.3 cm length), intermediate (ca. 0.5-0.6 cm length), and mature leaves (ca. 3 cm length). The length of chlorenchyma cells approximately doubles from young to intermediate and again from intermediate to the mature leaf stage. In young chlorenchyma cells, there is a single type of chloroplast; the chloroplasts are evenly distributed throughout the cytosol, and all contain starch and rubisco. During leaf development, the activities of phosphoenolpyruvate carboxylase (PEPC; which is cytosolic), rubisco, and pyruvate,Pi dikinase (PPDK) increase on a chlorophyll basis. As leaves mature, chloroplasts differentiate into two distinct structural and biochemical types that are spatially separated into the proximal and distal parts of the cell (the proximal end being closest to the center of the leaf). The early stages of this polarization are observed in intermediate leaves, and the polarization is fully developed in mature leaves. The chloroplasts in the distal ends of the cell have reduced grana and little starch, while those at the proximal ends have well-developed grana and abundant starch. In mature leaves, PPDK is expressed in chloroplasts at the distal end of the cells, while rubisco and adenosine diphosphate glucose (ADPG) pyrophosphorylase are selectively expressed in chloroplasts at the proximal end of the cell. Mitochondrial polarization also occurs during development as nicotinamide-adenine dinucleotide phosphate-malic enzyme (NAD-ME) and the photorespiratory enzyme glycine decarboxylase are expressed in mature but not young leaves and are localized in mitochondria at the proximal end of the cells. The data show that single-cell C(4) develops from a single pool of identical organelles that develop differential biochemical functions and spatial partitioning in the cell during maturation.

8.
Plant Physiol ; 130(3): 1573-83, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12428022

RESUMO

Wild-type (wt) Arabidopsis plants, the starch-deficient mutant TL46, and the near-starchless mutant TL25 were grown in hydroponics under two levels of nitrate, 0.2 versus 6 mM, and two levels of CO(2), 35 versus 100 Pa. Growth (fresh weight and leaf area basis) was highest in wt plants, lower in TL46, and much lower in TL25 plants under a given treatment. It is surprising that the inability to synthesize starch restricted leaf area development under both low N (N(L)) and high N (N(H)). For each genotype, the order of greatest growth among the four treatments was high CO(2)/N(H) > low CO(2)/N(H), > high CO(2)/N(L), which was similar to low CO(2)/N(L). Under high CO(2)/N(L), wt and TL46 plants retained considerable starch in leaves at the end of the night period, and TL25 accumulated large amounts of soluble sugars, indicative of N-limited restraints on utilization of photosynthates. The lowest ribulose-1,5-bisphosphate carboxylase/oxygenase per leaf area was in plants grown under high CO(2)/N(L). When N supply is limited, the increase in soluble sugars, particularly in the starch mutants, apparently accentuates the feedback and down-regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase, resulting in greater reduction of growth. With an adequate supply of N, growth is limited in the starch mutants due to insufficient carbohydrate reserves during the dark period. A combination of limited N and a limited capacity to synthesize starch, which restrict the capacity to use photosynthate, and high CO(2), which increases the potential to produce photosynthate, provides conditions for strong down-regulation of photosynthesis.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Dióxido de Carbono/farmacologia , Nitratos/farmacologia , Ribulose-Bifosfato Carboxilase/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Carbono/metabolismo , Interações Medicamentosas , Hexoses/metabolismo , Mutação , Nitrogênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/efeitos dos fármacos , Amido/metabolismo
9.
Plant Physiol ; 130(2): 964-76, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12376660

RESUMO

A mutant of the NAD-malic enzyme-type C(4) plant, Amaranthus edulis, which lacks phosphoenolpyruvate carboxylase (PEPC) in the mesophyll cells was studied. Analysis of CO(2) response curves of photosynthesis of the mutant, which has normal Kranz anatomy but lacks a functional C(4) cycle, provided a direct means of determining the liquid phase-diffusive resistance of atmospheric CO(2) to sites of ribulose 1,5-bisphosphate carboxylation inside bundle sheath (BS) chloroplasts (r(bs)) within intact plants. Comparisons were made with excised shoots of wild-type plants fed 3,3-dichloro-2-(dihydroxyphosphinoyl-methyl)-propenoate, an inhibitor of PEPC. Values of r(bs) in A. edulis were 70 to 180 m(2) s(-1) mol(-1), increasing as the leaf matured. This is about 70-fold higher than the liquid phase resistance for diffusion of CO(2) to Rubisco in mesophyll cells of C(3) plants. The values of r(bs) in A. edulis are sufficient for C(4) photosynthesis to elevate CO(2) in BS cells and to minimize photorespiration. The calculated CO(2) concentration in BS cells, which is dependent on input of r(bs), was about 2,000 microbar under maximum rates of CO(2) fixation, which is about six times the ambient level of CO(2). High re-assimilation of photorespired CO(2) was demonstrated in both mutant and wild-type plants at limiting CO(2) concentrations, which can be explained by high r(bs). Increasing O(2) from near zero up to ambient levels under low CO(2), resulted in an increase in the gross rate of O(2) evolution measured by chlorophyll fluorescence analysis in the PEPC mutant; this increase was simulated from a Rubisco kinetic model, which indicates effective refixation of photorespired CO(2) in BS cells.


Assuntos
Amaranthus/metabolismo , Dióxido de Carbono/farmacologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Acrilatos/farmacologia , Amaranthus/citologia , Amaranthus/genética , Transporte Biológico , Dióxido de Carbono/metabolismo , Respiração Celular/fisiologia , Cloroplastos/metabolismo , Difusão , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Transporte de Elétrons/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz , Malato Desidrogenase/metabolismo , Microscopia Eletrônica , Mutação , Oxigênio/metabolismo , Oxigênio/farmacologia , Ácidos Fosfínicos/farmacologia , Fosfoenolpiruvato Carboxilase/antagonistas & inibidores , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/classificação , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos dos fármacos , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Folhas de Planta/citologia , Folhas de Planta/ultraestrutura , Ribulose-Bifosfato Carboxilase/metabolismo , Temperatura
10.
Plant J ; 31(5): 649-62, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12207654

RESUMO

Kranz anatomy, with its separation of elements of the C4 pathway between two cells, has been an accepted criterion for function of C4 photosynthesis in terrestrial plants. However, Bienertia cycloptera (Chenopodiaceae), which grows in salty depressions of Central Asian semi-deserts, has unusual chlorenchyma, lacks Kranz anatomy, but has photosynthetic features of C4 plants. Its photosynthetic response to varying CO2 and O2 is typical of C4 plants having Kranz anatomy. Lack of night-time CO2 fixation indicates it is not acquiring carbon by Crassulacean acid metabolism. This species exhibits an independent, novel solution to function of the C4 mechanism through spatial compartmentation of dimorphic chloroplasts, other organelles and photosynthetic enzymes in distinct positions within a single chlorenchyma cell. The chlorenchyma cells have a large, spherical central cytoplasmic compartment interconnected by cytoplasmic channels through the vacuole to the peripheral cytoplasm. This compartment is filled with mitochondria and granal chloroplasts, while the peripheral cytoplasm apparently lacks mitochondria and has grana-deficient chloroplasts. Immunolocalization studies show enzymes compartmentalized selectively in the CC compartment, including Rubisco in chloroplasts, and NAD-malic enzyme and glycine decarboxylase in mitochondria, whereas pyruvate, Pi dikinase of the C4 cycle is localized selectively in peripheral chloroplasts. Phosphoenolpyruvate carboxylase, a cytosolic C4 cycle enzyme, is enriched in the peripheral cytoplasm. Our results show Bienertia utilizes strict compartmentation of organelles and enzymes within a single cell to effectively mimic the spatial separation of Kranz anatomy, allowing it to function as a C4 plant having suppressed photorespiration; this raises interesting questions about evolution of C4 mechanisms.


Assuntos
Carbono/metabolismo , Chenopodiaceae/fisiologia , Fotossíntese/fisiologia , Aminoácido Oxirredutases/metabolismo , Western Blotting , Dióxido de Carbono/farmacologia , Isótopos de Carbono , Radioisótopos de Carbono , Compartimento Celular/fisiologia , Respiração Celular/fisiologia , Chenopodiaceae/classificação , Chenopodiaceae/citologia , Cloroplastos/ultraestrutura , Citoplasma/ultraestrutura , Glicina Desidrogenase (Descarboxilante) , Hibridização In Situ , Malato Desidrogenase/metabolismo , Microscopia Confocal , Microscopia Eletrônica , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese/efeitos dos fármacos , Piruvato Ortofosfato Diquinase/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Vacúolos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA