Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2670, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236922

RESUMO

Semiconducting colloidal quantum dots and their assemblies exhibit superior optical properties owing to the quantum confinement effect. Thus, they are attracting tremendous interest from fundamental research to commercial applications. However, the electrical conducting properties remain detrimental predominantly due to the orientational disorder of quantum dots in the assembly. Here we report high conductivity and the consequent metallic behaviour of semiconducting colloidal quantum dots of lead sulphide. Precise facet orientation control to forming highly-ordered quasi-2-dimensional epitaxially-connected quantum dot superlattices is vital for high conductivity. The intrinsically high mobility over 10 cm2 V-1 s-1 and temperature-independent behaviour proved the high potential of semiconductor quantum dots for electrical conducting properties. Furthermore, the continuously tunable subband filling will enable quantum dot superlattices to be a future platform for emerging physical properties investigations, such as strongly correlated and topological states, as demonstrated in the moiré superlattices of twisted bilayer graphene.

2.
Nat Commun ; 11(1): 5471, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122641

RESUMO

In quantum dot superlattices, wherein quantum dots are periodically arranged, electronic states between adjacent quantum dots are coupled by quantum resonance, which arises from the short-range electronic coupling of wave functions, and thus the formation of minibands is expected. Quantum dot superlattices have the potential to be key materials for new optoelectronic devices, such as highly efficient solar cells and photodetectors. Herein, we report the fabrication of CdTe quantum dot superlattices via the layer-by-layer assembly of positively charged polyelectrolytes and negatively charged CdTe quantum dots. We can thus control the dimension of the quantum resonance by independently changing the distances between quantum dots in the stacking (out-of-plane) and in-plane directions. Furthermore, we experimentally verify the miniband formation by measuring the excitation energy dependence of the photoluminescence spectra and detection energy dependence of the photoluminescence excitation spectra.

3.
Nano Lett ; 18(11): 6789-6794, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30285446

RESUMO

Transition metal dichalcogenide nanotubes are fascinating platforms for the research of superconductivity due to their unique dimensionalities and geometries. Here we report the diameter dependence of superconductivity in individual WS2 nanotubes. The superconductivity is realized by electrochemical doping via the ionic gating technique in which the diameter of the nanotube is estimated from the periodic oscillating magnetoresistance, known as the Little-Parks effect. The critical temperature of superconductivity displays an unexpected linear behavior as a function of the inverse diameter, that is, the curvature of the nanotube. The present results are an important step in understanding the microscopic mechanism of superconductivity in a nanotube, opening up a new way of superconductivity in crystalline nanostructures.

4.
Sci Rep ; 8(1): 481, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323176

RESUMO

Preparation of highly crystalline organic semiconductor films is vital to achieving high performance in electronic devices. Here we report that surface segregated monolayers (SSMs) on top of phenyl-C61-butyric acid methyl ester (PCBM) thin films induce crystal growth in the bulk, resulting in a dramatic change in the structure to form a new crystal phase. Highly ordered crystalline films with large domain sizes of several hundreds of nanometers are formed with uniaxial orientation of the crystal structure perpendicular to the substrate. The molecular rearrangements in SSMs trigger the nucleation at a lower temperature than that for the spontaneous nucleation in PCBM. The vertical charge mobility in the SSM-induced crystal domains of PCBM is five times higher than in the ordinary polycrystalline domains. Using surface monolayers may be a new strategy for controlling crystal structures and obtaining high-quality organic thin films by post-deposition crystallization.

5.
ACS Appl Mater Interfaces ; 9(5): 4758-4768, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28094499

RESUMO

Heteroblock copolymers consisting of poly(3-hexylthiophene) and fullerene-attached poly(3-alkylselenophene) (T-b-Se-PCBP) were synthesized for organic photovoltaic applications by quasi-living catalyst transfer polycondensation and subsequent conversion reactions. Characterization of the polymers confirmed the formation of well-defined diblock structures with high loading of the fullerene at the side chain (∼40 wt %). Heteroblock copolymer cast as a thin film showed a clear microphase-separated nanostructure approximately 30 nm in repeating unit after thermal annealing, which is identical to the microphase-separated nanostructure of diblock copolymer consisting of poly(3-hexylthiophene) and fullerene-attached poly(3-alkylthiophene) (T-b-T-PCBP). These heteroblock copolymers provide an ideal platform for investigating the effects of nanostructures and interfacial energetics on the performance of organic photovoltaic devices.

6.
Sci Rep ; 6: 35681, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819331

RESUMO

An AlN template layer is required for growth of AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs). However, the crystal quality of AlN templates grown on both flat and patterned Si substrates has so far been insufficient for replacing templates grown on sapphire substrates. In this work, we grew a high-quality AlN template on 2 in. micro-circle-patterned Si substrate (mPSiS) with two different sizes and shapes through controlling the bias power of inductively coupled plasma (ICP) etching. The experimental results showed that the best AlN template was obtained on a large pattern size with a bow-angle shape and the template had X-ray rocking curves with full widths at half-maximum of 620 and 1141 arcsec for the (002) and (102) reflection planes. The threading dislocation density near surface of AlN template through transmission electron microscopy (TEM) estimation was in the order of 107 cm-2, which is the lowest dislocation density reported for a Si substrate to our knowledge. A strong single electroluminescence (EL) peak was also obtained for an AlGaN-based deep UV-LED grown on this template, means that it can be used for further developing high-efficiency deep UV-LEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...