Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(2-1): 024704, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723717

RESUMO

We study the director configurations of nematic liquid crystal (NLC) droplets with homeotropic anchoring in a magnetic field and report observation of a magnetic-field-driven transition from a deformed radial to an axial-with-defect configuration. Magnetic-field-induced transitions in NLC droplets differ fundamentally from the traditional planar Freedericksz transition due to the spherical droplet geometry and resulting topological defect. This transition has been studied theoretically, but the director configurations and mechanism of defect evolution in an applied magnetic field have yet to be observed experimentally. To this end, we combine polarized optical microscopy with a variable electromagnet (≤1 T) for continuous observation of droplet director fields, and we employ Landau-de Gennes numerical simulations to elucidate the director configurations and first-order nature of the transition. We report a configuration transition from point defect to ring defect at a critical field, which varies inversely with droplet radius and is relatively independent of surfactant type and concentration. We also estimate anchoring strengths of commonly used surfactants at the NLC-aqueous interface.

2.
Adv Mater ; 35(33): e2301323, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37165983

RESUMO

A top-down lithographic patterning and deposition process is reported for producing nanoparticles (NPs) with well-defined sizes, shapes, and compositions that are often not accessible by wet-chemical synthetic methods. These NPs are ligated and harvested from the substrate surface to prepare colloidal NP dispersions. Using a template-assisted assembly technique, fabricated NPs are driven by capillary forces to assemble into size- and shape-engineered templates and organize into open or close-packed multi-NP structures or NP metamolecules. The sizes and shapes of the NPs and of the templates control the NP number, coordination, interparticle gap size, disorder, and location of defects such as voids in the NP metamolecules. The plasmonic resonances of polygonal-shaped Au NPs are exploited to correlate the structure and optical properties of assembled NP metamolecules. Comparing open and close-packed architectures highlights that introduction of a center NP to form close-packed assemblies supports collective interactions, altering magnetic optical modes and multipolar interactions in Fano resonances. Decreasing the distance between NPs strengthens the plasmonic coupling, and the structural symmetries of the NP metamolecules determine the orientation-dependent scattering response.

3.
ACS Nano ; 16(12): 21259-21265, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36520667

RESUMO

We find evidence for the formation and relaxation of large exciton polarons in 2D organic-inorganic hybrid perovskites. Using ps-scale time-resolved photoluminescence within the phenethylammonium lead iodide family of compounds, we identify a red shifting of emission that we associate with exciton polaron formation time scales of 3-10 ps. Atomic substitutions of the phenethylammonium cation allow local control over the structure of the inorganic lattice, and we show that the structural differences among materials strongly influence the exciton polaron relaxation process, revealing a polaron binding energy that grows larger (up to 15 meV) in more strongly distorted compounds.

4.
Opt Express ; 30(24): 43513-43521, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523047

RESUMO

We present a novel technique for generating beams of light carrying orbital angular momentum (OAM) that increases mode purity and decreases singularity splitting by orders of magnitude. This technique also works to control and mitigate beam divergence within propagation distances less than the Rayleigh length. Additionally, we analyze a tunable parameter of this technique that can change the ratio of beam purity to power to fit desired specifications. Beam generation via this technique is achievable using only phase-modulating optical elements, which reduces experimental complexity and beam energy loss.

5.
Sci Adv ; 6(35): eabc1977, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32923648

RESUMO

Topology and strong electron correlations are crucial ingredients in emerging quantum materials, yet their intersection in experimental systems has been relatively limited to date. Strongly correlated Weyl semimetals, particularly when magnetism is incorporated, offer a unique and fertile platform to explore emergent phenomena in novel topological matter and topological spintronics. The antiferromagnetic Weyl semimetal Mn3Sn exhibits many exotic physical properties such as a large spontaneous Hall effect and has recently attracted intense interest. In this work, we report synthesis of epitaxial Mn3+x Sn1-x films with greatly extended compositional range in comparison with that of bulk samples. As Sn atoms are replaced by magnetic Mn atoms, the Kondo effect, which is a celebrated example of strong correlations, emerges, develops coherence, and induces a hybridization energy gap. The magnetic doping and gap opening lead to rich extraordinary properties, as exemplified by the prominent DC Hall effects and resonance-enhanced terahertz Faraday rotation.

6.
ACS Nano ; 14(3): 3621-3629, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32119528

RESUMO

We report a family of two-dimensional hybrid perovskites (2DHPs) based on phenethylammonium lead iodide ((PEA)2PbI4) that show complex structure in their low-temperature excitonic absorption and photoluminescence (PL) spectra as well as hot exciton PL. We replace the 2-position (ortho) H on the phenyl group of the PEA cation with F, Cl, or Br to systematically increase the cation's cross-sectional area and mass and study changes in the excitonic structure. These single atom substitutions substantially change the observable number of and spacing between discrete resonances in the excitonic absorption and PL spectra and drastically increase the amount of hot exciton PL that violates Kasha's rule by over an order of magnitude. To fit the progressively larger cations, the inorganic framework distorts and is strained, reducing the Pb-I-Pb bond angles and increasing the 2DHP band gap. Correlation between the 2DHP structure and steady-state and time-resolved spectra suggests the complex structure of resonances arises from one or two manifolds of states, depending on the 2DHP Pb-I-Pb bond angle (as)symmetry, and the resonances within a manifold are regularly spaced with an energy separation that decreases as the mass of the cation increases. The uniform separation between resonances and the dynamics that show excitons can only relax to the next-lowest state are consistent with a vibronic progression caused by a vibrational mode on the cation. These results demonstrate that simple changes to the cation can be used to tailor the properties and dynamics of the confined excitons without directly modifying the inorganic framework.

7.
Inorg Chem ; 59(19): 13831-13844, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32207611

RESUMO

We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [Co4L6]4-, where L2- = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCo4L6]4-, was confirmed by 1H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCo4L6]4-, koff = 4.45(5) × 102 s-1, was at least 40 times greater than that in the analogous [XeFe4L6]4- complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of 129Xe nuclei in [XeCo4L6]4- produced significant hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCo4L6]4- as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated 129Xe in H2O. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated 129Xe nucleus and electron spins on the four CoII centers. As such, [XeCo4L6]4- represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST 129Xe NMR resonance for [XeCo4L6]4- (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFe4L6]4- (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH2)3)4[Xe0.7Co4L6]·75 H2O (1). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH2)3)+, stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å3) in the large (135 Å3) cavity of 1. Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin CoII centers in 1. Furthermore, [Co4L6]4- was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCo4L6]4- was unaffected by biological macromolecules in H2O. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive 129Xe-based sensors.

8.
Nat Commun ; 11(1): 546, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992694

RESUMO

The properties of van der Waals (vdW) materials often vary dramatically with the atomic stacking order between layers, but this order can be difficult to control. Trilayer graphene (TLG) stacks in either a semimetallic ABA or a semiconducting ABC configuration with a gate-tunable band gap, but the latter has only been produced by exfoliation. Here we present a chemical vapor deposition approach to TLG growth that yields greatly enhanced fraction and size of ABC domains. The key insight is that substrate curvature can stabilize ABC domains. Controllable ABC yields ~59% were achieved by tailoring substrate curvature levels. ABC fractions remained high after transfer to device substrates, as confirmed by transport measurements revealing the expected tunable ABC band gap. Substrate topography engineering provides a path to large-scale synthesis of epitaxial ABC-TLG and other vdW materials.

9.
ACS Appl Mater Interfaces ; 11(30): 26789-26797, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283175

RESUMO

The development of a suitable catalyst for the oxygen reduction reaction (ORR), the cathode reaction of proton exchange membrane fuel cells (PEMFC), is necessary to push this technology toward widespread adoption. There have been substantial efforts to utilize bimetallic Pt-M alloys that adopt the ordered face-centered tetragonal (L10) phase in order to reduce the usage of precious metal, enhance the ORR performance, and improve catalyst stability. In this work, monodisperse Pt-Co nanocrystals (NCs) with well-defined size (4-5 nm) and cobalt composition (25-75 at%) were synthesized via colloidal synthesis. The transformation from the chemically disordered A1 (face-centered cubic, fcc) to the L10 phase was achieved via thermal annealing using both a conventional oven and a rapid thermal annealing process. The structure of the Pt-Co catalysts was characterized by a variety of techniques, including transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy in high-angle annular dark-field scanning transmission electron microscopy (STEM-EDS), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and inductively coupled plasma-optical emission spectrometry (ICP-OES). The effects of annealing temperature on the composition-dependent degree of ordering and subsequent effect on ORR activity is described. This work provides insights regarding the optimal spatial distribution of elements at the atomic level to achieve enhanced ORR activity and stability.

10.
Phys Rev Lett ; 119(9): 095502, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949582

RESUMO

Birefringence in stable glasses produced by physical vapor deposition often implies molecular alignment similar to liquid crystals. As such, it remains unclear whether these glasses share the same energy landscape as liquid-quenched glasses that have been aged for millions of years. Here, we produce stable glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene molecules that retain three-dimensional shapes and do not preferentially align in a specific direction. Using a combination of angle- and polarization-dependent photoluminescence and ellipsometry experiments, we show that these stable glasses possess a predominantly isotropic molecular orientation while being optically birefringent. The intrinsic birefringence strongly correlates with increased density, showing that molecular ordering is not required to produce stable glasses or optical birefringence, and provides important insights into the process of stable glass formation via surface-mediated equilibration. To our knowledge, such novel amorphous packing has never been reported in the past.

11.
Nanoscale ; 9(37): 13922-13928, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28905962

RESUMO

The collective magnetic properties of nanoparticle (NP) solid films are greatly affected by inter-particle dipole-dipole interactions and therefore the proximity of the neighboring particles. In this study, a series of dendritic ligands (generations 0 to 3, G0-G3) have been designed and used to cover the surface of magnetic NPs to control the spacings between the NP components in single lattices. The dendrons of different generations introduced here were based on the 2,2-bis(hydroxymethyl)propionic acid (Bis-MPA) scaffold and equipped with an appropriate surface binding group at one end and several fatty acid segments at the other extremity. The surface of the NPs was then modified by partial ligand exchange between the primary stabilizing surfactants and the new dendritic wedges. It was shown that this strategy permitted very precise tuning of inter-particle spacings in the range of 2.9-5.0 nm. As expected, the increase in the inter-particle spacings reduced the dipole-dipole interactions between magnetic NPs and therefore allowed changes in their magnetic permeability. The dendron size and inter-particle distance dependence was studied to reveal the dendritic effect and identify the optimal geometry and generation.

12.
ACS Nano ; 11(3): 2917-2927, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28190335

RESUMO

We explore the evolution of plasmonic modes in two-dimensional nanocrystal oligomer "metamolecules" as the number of nanocrystals is systematically varied. Precise, hexagonally ordered Au nanocrystal oligomers with 1-31 members are assembled via capillary forces into polygonal topographic templates defined using electron-beam lithography. The visible and near-infrared scattering response of individual oligomers is measured by spatially resolved, polarized darkfield scattering spectroscopy. The response is highly sensitive to in-plane versus out-of-plane incident polarization, and we observe an exponentially saturating red shift in plasmon resonance wavelength as the number of nanocrystals per oligomer increases, in agreement with theoretical predictions. Simulations further elucidate the modes supported by the oligomers, including electric dipole and magnetic dipole resonances and their Fano interference. The single-oligomer sensitivity of our measurements also reveals the role of positional disorder in determining the wavelength and character of the plasmonic response. The progression of oligomer metamolecule structures studied here advances our understanding of fundamental plasmonic interactions in the transition regime between few-member plasmonic clusters and extended two-dimensional arrays.

13.
Nat Nanotechnol ; 12(3): 228-232, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27819691

RESUMO

Next-generation 'smart' nanoparticle systems should be precisely engineered in size, shape and composition to introduce multiple functionalities, unattainable from a single material. Bottom-up chemical methods are prized for the synthesis of crystalline nanoparticles, that is, nanocrystals, with size- and shape-dependent physical properties, but they are less successful in achieving multifunctionality. Top-down lithographic methods can produce multifunctional nanoparticles with precise size and shape control, yet this becomes increasingly difficult at sizes of ∼10 nm. Here, we report the fabrication of multifunctional, smart nanoparticle systems by combining top-down fabrication and bottom-up self-assembly methods. Particularly, we template nanorods from a mixture of superparamagnetic Zn0.2Fe2.8O4 and plasmonic Au nanocrystals. The superparamagnetism of Zn0.2Fe2.8O4 prevents these nanorods from spontaneous magnetic-dipole-induced aggregation, while their magnetic anisotropy makes them responsive to an external field. Ligand exchange drives Au nanocrystal fusion and forms a porous network, imparting the nanorods with high mechanical strength and polarization-dependent infrared surface plasmon resonances. The combined superparamagnetic and plasmonic functions enable switching of the infrared transmission of a hybrid nanorod suspension using an external magnetic field.

14.
2d Mater ; 4(2)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29707213

RESUMO

Large-area growth of monolayer films of the transition metal dichalcogenides is of the utmost importance in this rapidly advancing research area. The mechanical exfoliation method offers high quality monolayer material but it is a problematic approach when applied to materials that are not air stable. One important example is 1T'-WTe2, which in multilayer form is reported to possess a large non saturating magnetoresistance, pressure induced superconductivity, and a weak antilocalization effect, but electrical data for the monolayer is yet to be reported due to its rapid degradation in air. Here we report a reliable and reproducible large-area growth process for obtaining many monolayer 1T'-WTe2 flakes. We confirmed the composition and structure of monolayer 1T'-WTe2 flakes using x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, Raman spectroscopy and aberration corrected transmission electron microscopy. We studied the time dependent degradation of monolayer 1T'-WTe2 under ambient conditions, and we used first-principles calculations to identify reaction with oxygen as the degradation mechanism. Finally we investigated the electrical properties of monolayer 1T'-WTe2 and found metallic conduction at low temperature along with a weak antilocalization effect that is evidence for strong spin-orbit coupling.

15.
J Am Chem Soc ; 138(42): 13798-13801, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27706940

RESUMO

Quantum and dielectric confinement effects in Ruddlesden-Popper 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling (EPC) in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures <75 K, we resolve splitting of the excitonic absorption and PL into multiple regularly spaced resonances every 40-46 meV, consistent with EPC to phonons located on the organic cation. We also resolve resonances with a 14 meV spacing, in accord with coupling to phonons with mixed organic and inorganic character. These assignments are supported by density-functional theory calculations. Hot exciton PL and time-resolved PL measurements show that vibrational relaxation occurs on a picosecond time scale competitive with that for PL. At temperatures >75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous at temperatures <75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton.

16.
Nano Lett ; 16(7): 4297-304, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27223343

RESUMO

Growth of transition metal dichalcogenide (TMD) monolayers is of interest due to their unique electrical and optical properties. Films in the 2H and 1T phases have been widely studied but monolayers of some 1T'-TMDs are predicted to be large-gap quantum spin Hall insulators, suitable for innovative transistor structures that can be switched via a topological phase transition rather than conventional carrier depletion [ Qian et al. Science 2014 , 346 , 1344 - 1347 ]. Here we detail a reproducible method for chemical vapor deposition of monolayer, single-crystal flakes of 1T'-MoTe2. Atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy confirm the composition and structure of MoTe2 flakes. Variable temperature magnetotransport shows weak antilocalization at low temperatures, an effect seen in topological insulators and evidence of strong spin-orbit coupling. Our approach provides a pathway to systematic investigation of monolayer, single-crystal 1T'-MoTe2 and implementation in next-generation nanoelectronic devices.


Assuntos
Gases/química , Análise Espectral Raman , Temperatura Baixa , Espectroscopia Fotoeletrônica , Temperatura
17.
Chemphyschem ; 17(5): 759-65, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26502934

RESUMO

With an ultrafast time-resolved photoluminescence system utilizing a Kerr gate, the time-resolved photoluminescence of core and shell constituents within CdSe/CdS dot-in-rod heterostructures is studied as a function of heterostructure size. Measurements performed at low excitation fluence generating, on average, less than one exciton per nanorod, reveal photoluminescence from direct recombination of carriers in the CdS heterostructure rod with lifetime generally increasing from 0.4 ps to 1.3 ps as the rod length increases. Decay of the CdS rod photoluminescence is accompanied by an increase in emission from the CdSe core on comparable time scales, also trending towards larger values as the rod length increases. The observed kinetics can be explained without invoking a non-radiative trapping mechanism. We also present alloying as a mechanism for enhancing electron confinement and reducing fluorescence lifetime at nanosecond time scales.


Assuntos
Compostos de Cádmio/química , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Luminescência
18.
J Mater Chem B ; 3(34): 6877-6884, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26693011

RESUMO

A low temperature, aqueous synthesis of polyhedral iron oxide nanoparticles (IONPs) is presented. The modification of the co-precipitation hydrolysis method with Triton X surfactants results in the formation of crystalline polyhedral particles. The particles are herein termed iron oxide "nanobricks" (IONBs) as the variety of particles made are all variations on a simple "brick-like" rhombohedral shape as evaluated by TEM. These IONBs can be easily coated with hydrophilic silane ligands, allowing them to be dispersed in aqueous media. The dispersed particles are investigated for potential applications as hyperthermia and T2 MRI contrast agents. The results demonstrate that the IONBs perform better than comparable spherical IONPs in both applications, and show r2 values amongst the highest for iron oxide based materials reported in the literature.

19.
ACS Nano ; 9(2): 1440-7, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25635923

RESUMO

We use time-integrated and time-resolved photoluminescence and absorption to characterize the low-temperature optical properties of CdSe quantum dot solids after exchanging native aliphatic ligands for thiocyanate and subsequent thermal annealing. In contrast to trends established at room temperature, our data show that at low temperature the band-edge absorptive bleach is dominated by 1S3/2h hole occupation in the quantum dot interior. We find that our ligand treatments, which bring enhanced interparticle coupling, lead to faster surface state electron trapping, a greater proportion of surface-related photoluminescence, and decreased band-edge photoluminescence lifetimes.

20.
Langmuir ; 31(3): 1155-63, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25547120

RESUMO

A safe, scalable method for producing highly conductive aligned films of single-walled carbon nanotubes (SWNTs) from water suspensions is presented. While microfluidic assembly of SWNTs has received significant attention, achieving desirable SWNT dispersion and morphology in fluids without an insulating surfactant or toxic superacid is challenging. We present a method that uniquely produces a noncorrosive ink that can be directly applied to a device in situ, which is different from previous fabrication techniques. Functionalized SWNTs (f-SWNTs) are dispersed in an aqueous urea solution to leverage binding between the amine group of urea and the carboxylic acid group of f-SWNTs and obtain urea-SWNT. Compared with SWNTs dispersed using conventional methods (e.g., superacid and surfactants), the dispersed urea-SWNT aggregates have a higher aspect ratio with a rodlike morphology as measured by light scattering. The Mayer rod technique is used to prepare urea-SWNT, highly aligned films (two-dimensional nematic order parameter of 0.6, 5 µm spot size, via polarized Raman) with resistance values as low as 15-1700 Ω/sq in a transmittance range of 2-80% at 550 nm. These values compete with the best literature values for conductivity of SWNT-enabled thin films. The findings offer promising opportunities for industrial applications relying on highly conductive thin SWNT films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...