Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cancers (Basel) ; 15(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067275

RESUMO

Analyses of our microRNA (miRNA) expression signature combined with The Cancer Genome Atlas (TCGA) data revealed that both strands of pre-miR-139 (miR-139-5p, the guide strand, and miR-139-3p, the passenger strand) are significantly downregulated in lung adenocarcinoma (LUAD) clinical specimens. Functional analyses of LUAD cells ectopically expressing miR-139-3p showed significant suppression of their aggressiveness (e.g., cancer cell proliferation, migration, and invasion). The involvement of the passenger strand, miR-139-3p, in LUAD pathogenesis, is an interesting finding contributing to the elucidation of unknown molecular networks in LUAD. Of 1108 genes identified as miR-139-3p targets in LUAD cells, 21 were significantly upregulated in LUAD tissues according to TCGA analysis, and their high expression negatively affected the prognosis of LUAD patients. We focused on thyroid hormone receptor interactor 13 (TRIP13) and investigated its cancer-promoting functions in LUAD cells. Luciferase assays showed that miR-139-3p directly regulated TRIP13. siRNA-mediated TRIP13 knockdown and TRIP13 inhibition by a specific inhibitor (DCZ0415) attenuated the malignant transformation of LUAD cells. Interestingly, when used in combination with anticancer drugs (cisplatin and carboplatin), DCZ0415 exerted synergistic effects on cell proliferation suppression. Identifying the molecular pathways regulated by tumor-suppressive miRNAs (including passenger strands) may aid in the discovery of diagnostic markers and therapeutic targets for LUAD.

2.
Cancers (Basel) ; 15(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627217

RESUMO

Accumulating evidence suggests that the miR-30 family act as critical players (tumor-suppressor or oncogenic) in a wide range of human cancers. Analysis of microRNA (miRNA) expression signatures and The Cancer Genome Atlas (TCGA) database revealed that that two passenger strand miRNAs, miR-30c-1-3p and miR-30c-2-3p, were downregulated in cancer tissues, and their low expression was closely associated with worse prognosis in patients with BrCa. Functional assays showed that miR-30c-1-3p and miR-30c-2-3p overexpression significantly inhibited cancer cell aggressiveness, suggesting these two miRNAs acted as tumor-suppressors in BrCa cells. Notably, involvement of passenger strands of miRNAs is a new concept of cancer research. Further analyses showed that seven genes (TRIP13, CCNB1, RAD51, PSPH, CENPN, KPNA2, and MXRA5) were putative targets of miR-30c-1-3p and miR-30c-2-3p in BrCa cells. Expression of seven genes were upregulated in BrCa tissues and predicted a worse prognosis of the patients. Among these genes, we focused on TRIP13 and investigated the functional significance of this gene in BrCa cells. Luciferase reporter assays showed that TRIP13 was directly regulated by these two miRNAs. TRIP13 knockdown using siRNA attenuated BrCa cell aggressiveness. Inactivation of TRIP13 using a specific inhibitor prevented the malignant transformation of BrCa cells. Exploring the molecular networks controlled by miRNAs, including passenger strands, will facilitate the identification of diagnostic markers and therapeutic target molecules in BrCa.

3.
Cells ; 12(14)2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37508549

RESUMO

The involvement of passenger strands of miRNAs in the molecular pathogenesis of human cancers is a recent concept in miRNA research, and it will broaden our understanding of the molecular mechanisms of miRNA-mediated cancer. The analysis of our miRNA signature of LUAD revealed that both strands of pre-miR-486 (miR-486-5p and miR-486-3p) were downregulated in LUAD tissues. Ectopic expression of both miRNAs induced cell cycle arrest in LUAD cells, suggesting both strands of miRNAs derived from pre-miR-486 were tumor suppressive. Our in silico analysis showed a total of 99 genes may be under the control of both miRNAs in LUAD cells. Importantly, among these targets, the high expression of seven genes (MKI67, GINS4, RRM2, HELLS, MELK, TIMELESS, and SAPCD2) predicted a poorer prognosis of LUAD patients (p < 0.05). We focused on GINS4, a DNA replication complex GINS protein that plays an essential role in the initiation of DNA replication. Our functional assays showed that GINS4 was directly controlled by both strands of pre-miR-486, and its aberrant expression facilitated the aggressive behavior of LUAD cells. GINS4 is attractive as a therapeutic target for this disease. MiRNA analysis, including passenger strands, will further improve our understanding of the molecular pathogenesis of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Proteínas Serina-Treonina Quinases , Proteínas Cromossômicas não Histona/genética , Proteínas Nucleares
4.
FEBS Open Bio ; 13(9): 1737-1755, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517032

RESUMO

Lung cancer is the most common cause of cancer-related death worldwide, accounting for 1.8 million deaths annually. Analysis of The Cancer Genome Atlas data showed that all members of the minichromosome maintenance (MCM) family (hexamers involved in DNA replication: MCM2-MCM7) were upregulated in lung adenocarcinoma (LUAD) tissues. High expression of MCM4 (P = 0.0032), MCM5 (P = 0.0032), and MCM7 (P = 0.0110) significantly predicted 5-year survival rates in patients with LUAD. Simurosertib (TAK-931) significantly suppressed the proliferation of LUAD cells by inhibiting cell division cycle 7-mediated MCM2 phosphorylation. This finding suggested that MCM2 might be a therapeutic target for LUAD. Moreover, analysis of the epigenetic regulation of MCM2 showed that miR-139-3p, miR-378a-5p, and miR-2110 modulated MCM2 expression in LUAD cells. In patients with LUAD, understanding the role of these miRNAs may improve prognoses.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Relevância Clínica , Epigênese Genética , Adenocarcinoma de Pulmão/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012427

RESUMO

Advanced-stage oral squamous cell carcinoma (OSCC) patients are treated with combination therapies, such as surgery, radiation, chemotherapy, and immunotherapy. However, OSCC cells acquire resistance to these treatments, resulting in local recurrence and distant metastasis. The identification of genes involved in drug resistance is essential for improving the treatment of this disease. In this study, we applied chromatin immunoprecipitation sequencing (ChIP-Seq) to profile active enhancers. For that purpose, we used OSCC cell lines that had been exposed to cetuximab for a prolonged period. In total, 64 chromosomal loci were identified as active super-enhancers (SE) according to active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) ChIP-Seq. In addition, a total of 131 genes were located in SE regions, and 34 genes were upregulated in OSCC tissues by TCGA-OSCC analysis. Moreover, high expression of four genes (C9orf89; p = 0.035, CENPA; p = 0.020, PISD; p = 0.0051, and TRAF2; p = 0.0075) closely predicted a poorer prognosis for OSCC patients according to log-rank tests. Increased expression of the four genes (mRNA Z-score ≥ 0) frequently co-occurred in TCGA-OSCC analyses. The high and low expression groups of the four genes showed significant differences in prognosis, suggesting that there are clear differences in the pathways based on the underlying gene expression profiles. These data indicate that potential stratified therapeutic strategies could be used to overcome resistance to drugs (including cetuximab) and further improve responses in drug-sensitive patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Cetuximab , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
6.
Genes (Basel) ; 13(7)2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886008

RESUMO

Analysis of microRNA (miRNA) expression signatures in head and neck squamous cell carcinoma (HNSCC) has revealed that the miR-30 family is frequently downregulated in cancer tissues. The Cancer Genome Atlas (TCGA) database confirms that all members of the miR-30 family (except miR-30c-5p) are downregulated in HNSCC tissues. Moreover, low expression of miR-30e-5p and miR-30c-1-3p significantly predicts shorter survival of HNSCC patients (p = 0.0081 and p = 0.0224, respectively). In this study, we focused on miR-30e-5p to investigate its tumor-suppressive roles and its control of oncogenic genes in HNSCC cells. Transient expression of miR-30e-5p significantly attenuated cancer cell migration and invasive abilities in HNSCC cells. Nine genes (DDIT4, FOXD1, FXR1, FZD2, HMGB3, MINPP1, PAWR, PFN2, and RTN4R) were identified as putative targets of miR-30e-5p control. Their expression levels significantly predicted shorter survival of HNSCC patients (p < 0.05). Among those targets, FOXD1 expression appeared to be an independent factor predicting patient survival according to multivariate Cox regression analysis (p = 0.049). Knockdown assays using siRNAs corresponding to FOXD1 showed that malignant phenotypes (e.g., cell proliferation, migration, and invasive abilities) of HNSCC cells were significantly suppressed. Overexpression of FOXD1 was confirmed by immunostaining of HNSCC clinical specimens. Our miRNA-based approach is an effective strategy for the identification of prognostic markers and therapeutic target molecules in HNSCC. Moreover, these findings led to insights into the molecular pathogenesis of HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Biomarcadores , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Humanos , MicroRNAs/genética , Profilinas/genética , Prognóstico , Proteínas de Ligação a RNA/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
7.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409173

RESUMO

Recently, our studies revealed that some passenger strands of microRNAs (miRNAs) were closely involved in cancer pathogenesis. Analysis of miRNA expression signatures showed that the expression of miR-30e-3p (the passenger strand of pre-miR-30e) was significantly downregulated in cancer tissues. In this study, we focused on miR-30e-3p (the passenger strand of pre-miR-30e). We addressed target genes controlled by miR-30e-3p that were closely associated with the molecular pathogenesis of head and neck squamous cell carcinoma (HNSCC). Ectopic expression assays demonstrated that the expression of miR-30e-3p attenuated cancer cell malignant phenotypes (e.g., cell proliferation, migration, and invasive abilities). Our analysis of miR-30e-3p targets revealed that 11 genes (ADA, CPNE8, C14orf126, ERGIC2, HMGA2, PLS3, PSMD10, RALB, SERPINE1, SFXN1, and TMEM87B) were expressed at high levels in HNSCC patients. Moreover, they significantly predicted the short survival of HNSCC patients based on 5-year overall survival rates (p < 0.05) in The Cancer Genome Atlas (TCGA). Among these targets, SERPINE1 was found to be an independent prognostic factor for patient survival (multivariate Cox regression; hazard ratio = 1.6078, p < 0.05). Aberrant expression of SERPINE1 was observed in HNSCC clinical samples by immunohistochemical analysis. Functional assays by targeting SERPINE1 expression revealed that the malignant phenotypes (e.g., proliferation, migration, and invasion abilities) of HNSCC cells were suppressed by the silencing of SERPINE1 expression. Our miRNA-based approach will accelerate our understanding of the molecular pathogenesis of HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
8.
Biomedicines ; 10(3)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35327465

RESUMO

Based on our original RNA sequence-based microRNA (miRNA) signatures of head and neck squamous cell carcinoma (HNSCC), it was revealed that the expression levels of miR-1-3p, miR-206, miR-133a-3p, and miR-133b were significantly suppressed in cancer specimens. Seed sequences of miR-1-3p/miR-206 and miR-133a-3p/miR-133b are identical. Interestingly, miR-1-3p/miR-133a-3p and miR-206/miR-133b are clustered in the human genome. We hypothesized that the genes coordinately controlled by these miRNAs are closely involved in the malignant transformation of HNSCC. Our in silico analysis identified a total of 28 genes that had putative miR-1-3p/miR-133a-3p and miR-206/miR-133b binding sites. Moreover, their expression levels were upregulated in HNSCC tissues. Multivariate Cox regression analyses showed that expression of PFN2 and PSEN1 were independent prognostic factors for patients with HNSCC (p < 0.05). Notably, four miRNAs (i.e., miR-1-3p, miR-206, miR-133a-3p, and miR-133b) directly bound the 3'untranslated region of PFN2 and controlled expression of the gene in HNSCC cells. Overexpression of PFN2 was confirmed in clinical specimens, and its aberrant expression facilitated cancer cell migration and invasion abilities. Our miRNA-based strategy continues to uncover novel genes closely involved in the oncogenesis of HNSCC.

9.
Genes (Basel) ; 12(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34946859

RESUMO

Our previous study revealed that the miR-199 family (miR-199a-5p/-3p and miR-199b-5p/-3p) acts as tumor-suppressive miRNAs in head and neck squamous cell carcinoma (HNSCC). Furthermore, recent studies have indicated that the passenger strands of miRNAs are involved in cancer pathogenesis. The aim of this study was to identify cancer-promoting genes commonly regulated by miR-199-5p and miR-199-3p in HNSCC cells. Our in silico analysis and luciferase reporter assay identified paxillin (PXN) as a direct target of both miR-199-5p and miR-199-3p in HNSCC cells. Analysis of the cancer genome atlas (TCGA) database showed that expression of PXN significantly predicted a worse prognosis (5-year overall survival rate; p = 0.0283). PXN expression was identified as an independent factor predicting patient survival according to multivariate Cox regression analyses (p = 0.0452). Overexpression of PXN was detected in HNSCC clinical specimens by immunostaining. Functional assays in HNSCC cells showed that knockdown of PXN expression attenuated cancer cell migration and invasion, suggesting that aberrant expression of PXN contributed to HNSCC cell aggressiveness. Our miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , MicroRNAs/genética , Paxilina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Biologia Computacional/métodos , Bases de Dados Genéticas , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Gradação de Tumores , Paxilina/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Taxa de Sobrevida
10.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576110

RESUMO

We newly generated an RNA-sequencing-based microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC). Analysis of the signature revealed that both strands of some miRNAs, including miR-139-5p (the guide strand) and miR-139-3p (the passenger strand) of miR-139, were downregulated in HNSCC tissues. Analysis of The Cancer Genome Atlas confirmed the low expression levels of miR-139 in HNSCC. Ectopic expression of these miRNAs attenuated the characteristics of cancer cell aggressiveness (e.g., cell proliferation, migration, and invasion). Our in silico analyses revealed a total of 28 putative targets regulated by pre-miR-139 (miR-139-5p and miR-139-3p) in HNSCC cells. Of these, the GNA12 (guanine nucleotide-binding protein subunit alpha-12) and OLR1 (oxidized low-density lipoprotein receptor 1) expression levels were identified as independent factors that predicted patient survival according to multivariate Cox regression analyses (p = 0.0018 and p = 0.0104, respectively). Direct regulation of GNA12 and OLR1 by miR-139-3p in HNSCC cells was confirmed through luciferase reporter assays. Moreover, overexpression of GNA12 and OLR1 was detected in clinical specimens of HNSCC through immunostaining. The involvement of miR-139-3p (the passenger strand) in the oncogenesis of HNSCC is a new concept in cancer biology. Our miRNA-based strategy will increase knowledge on the molecular pathogenesis of HNSCC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/genética , Oncogenes , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Humanos , MicroRNAs/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
11.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201353

RESUMO

We identified the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) tissues by RNA sequencing, in which 168 miRNAs were significantly upregulated, including both strands of the miR-31 duplex (miR-31-5p and miR-31-3p). The aims of this study were to identify networks of tumor suppressor genes regulated by miR-31-5p and miR-31-3p in HNSCC cells. Our functional assays showed that inhibition of miR-31-5p and miR-31-3p attenuated cancer cell malignant phenotypes (cell proliferation, migration, and invasion), suggesting that they had oncogenic potential in HNSCC cells. Our in silico analysis revealed 146 genes regulated by miR-31 in HNSCC cells. Among these targets, the low expression of seven genes (miR-31-5p targets: CACNB2 and IL34; miR-31-3p targets: CGNL1, CNTN3, GAS7, HOPX, and PBX1) was closely associated with poor prognosis in HNSCC. According to multivariate Cox regression analyses, the expression levels of five of those genes (CACNB2: p = 0.0189; IL34: p = 0.0425; CGNL1: p = 0.0014; CNTN3: p = 0.0304; and GAS7: p = 0.0412) were independent prognostic factors in patients with HNSCC. Our miRNA signature and miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neoplasias de Cabeça e Pescoço/patologia , MicroRNAs/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Biomarcadores Tumorais/genética , Proliferação de Células , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas
12.
Clin Case Rep ; 9(2): 848-852, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33598257

RESUMO

This report is the first to document TEN caused by nivolumab treatment in head and neck cancer. We believe this article can contribute significantly in understanding the principles of nivolumab treatment in patients with head and neck cancer.

13.
Cells ; 8(12)2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795200

RESUMO

To identify novel oncogenic targets in head and neck squamous cell carcinoma (HNSCC), we have analyzed antitumor microRNAs (miRNAs) and their controlled molecular networks in HNSCC cells. Based on our miRNA signature in HNSCC, both strands of the miR-99a-duplex (miR-99a-5p: the guide strand, and miR-99a-3p: the passenger strand) are downregulated in cancer tissues. Moreover, low expression of miR-99a-5p and miR-99a-3p significantly predicts poor prognosis in HNSCC, and these miRNAs regulate cancer cell migration and invasion. We previously showed that passenger strands of miRNAs have antitumor functions. Here, we screened miR-99a-3p-controlled oncogenes involved in HNSCC pathogenesis. Thirty-two genes were identified as miR-99a-3p-regulated genes, and 10 genes (STAMBP, TIMP4, TMEM14C, CANX, SUV420H1, HSP90B1, PDIA3, MTHFD2, BCAT1, and SLC22A15) significantly predicted 5-year overall survival. Notably, among these genes, STAMBP, TIMP4, TMEM14C, CANX, and SUV420H1 were independent prognostic markers of HNSCC by multivariate analyses. We further investigated the oncogenic function of STAMBP in HNSCC cells using knockdown assays. Our data demonstrated that the aggressiveness of phenotypes in HNSCC cells was attenuated by siSTAMBP transfection. Moreover, aberrant STAMBP expression was detected in HNSCC clinical specimens by immunohistochemistry. This strategy may contribute to the clarification of the molecular pathogenesis of this disease.


Assuntos
Carcinogênese , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , MicroRNAs , Oncogenes/fisiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Ubiquitina Tiolesterase/metabolismo
14.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514295

RESUMO

Our analyses of tumor-suppressive microRNAs (miRNAs) and their target oncogenes have identified novel molecular networks in lung adenocarcinoma (LUAD). Moreover, our recent studies revealed that some passenger strands of miRNAs contribute to cancer cell malignant transformation. Downregulation of both strands of the miR-143 duplex was observed in LUAD clinical specimens. Ectopic expression of these miRNAs suppressed malignant phenotypes in cancer cells, suggesting that these miRNAs have tumor-suppressive activities in LUAD cells. Here, we evaluated miR-143-5p molecular networks in LUAD using genome-wide gene expression and miRNA database analyses. Twenty-two genes were identified as potential miR-143-5p-controlled genes in LUAD cells. Interestingly, the expression of 11 genes (MCM4, RAD51, FAM111B, CLGN, KRT80, GPC1, MTL5, NETO2, FANCA, MTFR1, and TTLL12) was a prognostic factor for the patients with LUAD. Furthermore, knockdown assays using siRNAs showed that downregulation of MCM4 suppressed cell growth, migration, and invasion in LUAD cells. Aberrant expression of MCM4 was confirmed in the clinical specimens of LUAD. Thus, we showed that miR-143-5p and its target genes were involved in the molecular pathogenesis of LUAD. Identification of tumor-suppressive miRNAs and their target oncogenes may be an effective strategy for elucidation of the molecular oncogenic networks of this disease.


Assuntos
Adenocarcinoma de Pulmão/genética , MicroRNAs/genética , Oncogenes , Adenocarcinoma de Pulmão/patologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Componente 4 do Complexo de Manutenção de Minicromossomo/genética , Componente 4 do Complexo de Manutenção de Minicromossomo/metabolismo , Análise Multivariada , Invasividade Neoplásica , Fenótipo
15.
Cancers (Basel) ; 11(5)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052206

RESUMO

Based on our miRNA expression signatures, we focused on miR-150-5p (the guide strand) and miR-150-3p (the passenger strand) to investigate their functional significance in lung adenocarcinoma (LUAD). Downregulation of miR-150 duplex was confirmed in LUAD clinical specimens. In vitro assays revealed that ectopic expression of miR-150-5p and miR-150-3p inhibited cancer cell malignancy. We performed genome-wide gene expression analyses and in silico database searches to identify their oncogenic targets in LUAD cells. A total of 41 and 26 genes were identified as miR-150-5p and miR-150-3p targets, respectively, and they were closely involved in LUAD pathogenesis. Among the targets, we investigated the oncogenic roles of tensin 4 (TNS4) because high expression of TNS4 was strongly related to poorer prognosis of LUAD patients (disease-free survival: p = 0.0213 and overall survival: p = 0.0003). Expression of TNS4 was directly regulated by miR-150-3p in LUAD cells. Aberrant expression of TNS4 was detected in LUAD clinical specimens and its aberrant expression increased the aggressiveness of LUAD cells. Furthermore, we identified genes downstream from TNS4 that were associated with critical regulators of genomic stability. Our approach (discovery of anti-tumor miRNAs and their target RNAs for LUAD) will contribute to the elucidation of molecular networks involved in the malignant transformation of LUAD.

16.
Cancers (Basel) ; 11(2)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813343

RESUMO

In the human genome, miR-451a is encoded close to the miR-144 on chromosome region 17q11.2. Our previous study showed that both strands of pre-miR-144 acted as antitumor miRNAs and were involved in lung squamous cell carcinoma (LUSQ) pathogenesis. Here, we aimed to investigate the functional significance of miR-451a and to identify its targeting of oncogenic genes in LUSQ cells. Downregulation of miR-451a was confirmed in LUSQ clinical specimens, and low expression of miR-451a was significantly associated with poor prognosis of LUSQ patients (overall survival: p = 0.035, disease-free survival: p = 0.029). Additionally, we showed that ectopic expression of miR-451a significantly blocked cancer cell aggressiveness. In total, 15 putative oncogenic genes were shown to be regulated by miR-451a in LUSQ cells. Among these targets, high kinesin family member 2A (KIF2A) expression was significantly associated with poor prognosis (overall survival: p = 0.043, disease-free survival: p = 0.028). Multivariate analysis showed that KIF2A expression was an independent prognostic factor in patients with LUSQ (hazard ratio = 1.493, p = 0.034). Aberrant KIF2A expression promoted the malignant transformation of this disease. Analytic strategies based on antitumor miRNAs and their target oncogenes are effective tools for identification of novel molecular pathogenesis of LUSQ.

17.
Cancer Sci ; 110(1): 420-432, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30375717

RESUMO

The prognosis of patients with advanced-stage lung squamous cell carcinoma (LUSQ) is poor, and effective treatment protocols are limited. Our continuous analyses of antitumor microRNAs (miRNAs) and their oncogenic targets have revealed novel oncogenic pathways in LUSQ. Analyses of our original miRNA expression signatures indicated that both strands of miR-144 (miR-144-5p, the passenger strand; miR-144-3p, the guide strand) showed decreased expression in cancer tissues. Additionally, low expression of miR-144-5p significantly predicted a poor prognosis in patients with LUSQ by The Cancer Genome Atlas database analyses (overall survival, P = 0.026; disease-free survival, P = 0.023). Functional assays revealed that ectopic expression of miR-144-5p and miR-144-3p significantly blocked the malignant abilities of LUSQ cells, eg, cancer cell proliferation, migration, and invasion. In LUSQ cells, 13 and 15 genes were identified as possible oncogenic targets that might be regulated by miR-144-5p and miR-144-3p, respectively. Among these targets, we identified 3 genes (SLC44A5, MARCKS, and NCS1) that might be regulated by both strands of miR-144. Interestingly, high expression of NCS1 predicted a significantly poorer prognosis in patients with LUSQ (overall survival, P = 0.013; disease-free survival, P = 0.048). By multivariate analysis, NCS1 expression was found to be an independent prognostic factor for patients with LUSQ patients. Overexpression of NCS1 was detected in LUSQ clinical specimens, and its aberrant expression enhanced malignant transformation of LUSQ cells. Our approach, involving identification of antitumor miRNAs and their targets, will contribute to improving our understanding of the molecular pathogenesis of LUSQ.


Assuntos
Carcinoma de Células Escamosas/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs , Pessoa de Meia-Idade , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Substrato Quinase C Rico em Alanina Miristoilada/genética , Substrato Quinase C Rico em Alanina Miristoilada/metabolismo , Proteínas Sensoras de Cálcio Neuronal/genética , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Prognóstico
18.
Oncotarget ; 9(3): 3663-3676, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29423074

RESUMO

Due to their aggressive behavior, local recurrence and distant metastasis, survival rate of advanced stage of the patients with head and neck squamous cell carcinoma (HNSCC) is very poor. Currently available epidermal growth factor receptor (EGFR)-targeted therapies are not considered curative for HNSCC. Therefore, novel approaches for identification of therapeutic targets in HNSCC are needed. All members of the miRNA-29 family (miR-29a, miR-29b, and miR-29c) were downregulated in HNSCC tissues by analysis of RNA-sequencing based microRNA (miRNA) expression signature. Ectopic expression of mature miRNAs demonstrated that the miR-29 family inhibited cancer cell migration and invasion by HNSCC cell lines. Comprehensive gene expression studies and in silico database analyses were revealed that integrin ß1 (ITGB1) was regulated by the miR-29 family in HNSCC cells. Overexpression of ITGB1 was confirmed in HNSCC specimens, and high expression of ITGB1 significantly predicted poor survival in patients with HNSCC (p = 0.00463). Knockdown of ITGB1 significantly inhibited cancer cell migration and invasion through regulating downstream of ITGB1-mediated oncogenic signalling. In conclusion, regulation of the antitumor miR-29 family affected integrin-mediated oncogenic signalling to modulate HNSCC pathogenesis; these molecules may be novel therapeutic targets for HNSCC.

19.
Auris Nasus Larynx ; 45(4): 854-865, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29233721

RESUMO

OBJECTIVE: Our recent studies have revealed that both strands of pre-miRNAs, the guide strand and the passenger strand, are involved in cancer pathogenesis. Analyses of miRNA expression signatures by RNA sequencing in head and neck squamous cell carcinoma (HNSCC) showed that both of the strands of pre-miR-150 (miR-150-5p and miR-150-3p) were significantly downregulated, and that these miRNAs acted as antitumor miRNAs in HNSCC cells. The aim of this study was to identify oncogenic genes in HNSCC cells that were regulated by miR-150-5p and miR-150-3p. METHODS: Genome-wide gene expression studies, in silico analyses and dual-luciferase reporter assays were carried out to predict miR-150-5p and miR-150-3p regulation in HNSCC cells. Knockdown assay was applied to investigate the functional significance of the target gene. Overall patient survival as a function of target gene expression was estimated by The Cancer Genome Atlas (TCGA) database. RESULTS: A total of 19 genes were putative targets of both miR-150-5p and miR-150-3p regulation. Among them, SPOCK1 (SPARC/osteonectin, cwcv and kazal-like domains proteoglycan 1) was directly regulated by both miRNAs in HNSCC cells. Knockdown studies using si-SPOCK1 showed that expression of SPOCK1 enhanced HNSCC cell aggressiveness. Overexpression of SPOCK1/SPOCK1 was confirmed in HNSCC clinical specimens. Interestingly, analysis of a large number of patients in the TCGA database (n=248) demonstrated that patients with high SPOCK1 expression had significantly shorter survival than did those with low SPOCK1 expression (P=0.0003). Moreover, 15 pathways were identified as SPOCK1-mediated downstream pathways. CONCLUSION: Downregulation of both strands of pre-miR-150 (miR-150-5p and miR-150-3p) and overexpression of SPOCK1 contribute to the aggressive nature of HNSCC. The involvement of passenger strand miRNA in the regulation of HNSCC pathogenesis is a novel concept in RNA research.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/genética , Proteoglicanas/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteoglicanas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Carcinoma de Células Escamosas de Cabeça e Pescoço , Taxa de Sobrevida
20.
Int J Oncol ; 52(1): 166-178, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29115582

RESUMO

Analysis of the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) based on RNA sequencing showed that dual strands of pre­miR­145 (miR­145­5p, guide strand; and miR­145­3p, passenger strand) were significantly reduced in cancer tissues. In miRNA biogenesis, passenger strands of miRNAs are degraded and have no biological activities in cells. The aims of this study were to investigate the functional significance of the passenger strand of miR­145 and to identify miR­145­3p­regulated oncogenic genes in HNSCC cells. Expression levels of miR­145­5p and miR­145­3p were significantly downregulated in HNSCC tissues and cell lines (SAS and HSC3 cells). Ectopic expression of miR­145­3p inhibited cancer cell proliferation, migration and invasion, similar to miR­145­5p, in HNSCC cells. Myosin 1B (MYO1B) was directly regulated by miR­145­3p, and knockdown of MYO1B by siRNA inhibited cancer cell aggressiveness. Overexpression of MYO1B was confirmed in HNSCC clinical specimens by analysis of protein and mRNA levels. Interestingly, high expression of MYO1B was associated with poor prognosis in patients with HNSCC by analysis of The Cancer Genome Atlas database (p=0.00452). Our data demonstrated that the passenger strand of miR­145 acted as an antitumor miRNA through targeting MYO1B in HNSCC cells. The involvement of dual strands of pre­miR­145 (miR­145­5p and miR­145­3p) in the regulation of HNSCC pathogenesis is a novel concept in present RNA research.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/genética , Miosina Tipo I/genética , Adulto , Idoso , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Técnicas de Silenciamento de Genes , Genes Supressores de Tumor , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , MicroRNAs/biossíntese , Pessoa de Meia-Idade , Miosina Tipo I/biossíntese , Invasividade Neoplásica , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...