Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(4): 1197-1205, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141063

RESUMO

Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 18 children and young adults from 10 independent families typified by intellectual disability, motor developmental delay and gait disturbance. In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were present. The disorder is associated with rare variants in NUDT2, a mRNA decapping and Ap4A hydrolysing enzyme, including novel missense and in-frame deletion variants. We show that these NUDT2 variants lead to a marked loss of enzymatic activity, strongly implicating loss of NUDT2 function as the cause of the disorder. NUDT2-deficient patient fibroblasts exhibit a markedly altered transcriptome, accompanied by changes in mRNA half-life and stability. Amongst the most up-regulated mRNAs in NUDT2-deficient cells, we identified host response and interferon-responsive genes. Importantly, add-back experiments using an Ap4A hydrolase defective in mRNA decapping highlighted loss of NUDT2 decapping as the activity implicated in altered mRNA homeostasis. Our results confirm that reduction or loss of NUDT2 hydrolase activity is associated with a neurological disease, highlighting the importance of a physiologically balanced mRNA processing machinery for neuronal development and homeostasis.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Adulto Jovem , Humanos , RNA Mensageiro/genética , Monoéster Fosfórico Hidrolases/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nudix Hidrolases
2.
Commun Biol ; 6(1): 406, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055518

RESUMO

Accurate identification of NAD-capped RNAs is essential for delineating their generation and biological function. Previous transcriptome-wide methods used to classify NAD-capped RNAs in eukaryotes contain inherent limitations that have hindered the accurate identification of NAD caps from eukaryotic RNAs. In this study, we introduce two orthogonal methods to identify NAD-capped RNAs more precisely. The first, NADcapPro, uses copper-free click chemistry and the second is an intramolecular ligation-based RNA circularization, circNC. Together, these methods resolve the limitations of previous methods and allowed us to discover unforeseen features of NAD-capped RNAs in budding yeast. Contrary to previous reports, we find that 1) cellular NAD-RNAs can be full-length and polyadenylated transcripts, 2) transcription start sites for NAD-capped and canonical m7G-capped RNAs can be different, and 3) NAD caps can be added subsequent to transcription initiation. Moreover, we uncovered a dichotomy of NAD-RNAs in translation where they are detected with mitochondrial ribosomes but minimally on cytoplasmic ribosomes indicating their propensity to be translated in mitochondria.


Assuntos
NAD , Capuzes de RNA , Capuzes de RNA/genética , NAD/metabolismo , Eucariotos/metabolismo , Transcriptoma , Ribossomos/genética , Ribossomos/metabolismo
3.
Front Mol Biosci ; 9: 854170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060251

RESUMO

Many eukaryotic and some bacterial RNAs are modified at the 5' end by the addition of cap structures. In addition to the classic 7-methylguanosine 5' cap in eukaryotic mRNA, several non-canonical caps have recently been identified, including NAD-linked, FAD-linked, and UDP-glucose-linked RNAs. However, studies of the biochemical properties of these caps are impaired by the limited access to in vitro transcribed RNA probes of high quality, as the typical capping efficiencies with NAD or FAD dinucleotides achieved in the presence of T7 polymerase rarely exceed 50%, and pyrimidine derivatives are not incorporated because of promoter sequence limitations. To address this issue, we developed a series of di- and trinucleotide capping reagents and in vitro transcription conditions to provide straightforward access to unconventionally capped RNAs with improved 5'-end homogeneity. We show that because of the transcription start site flexibility of T7 polymerase, R1ppApG-type structures (where R1 is either nicotinamide riboside or riboflavin) are efficiently incorporated into RNA during transcription from dsDNA templates containing both φ 6.5 and φ 2.5 promoters and enable high capping efficiencies (∼90%). Moreover, uridine-initiated RNAs are accessible by transcription from templates containing the φ 6.5 promoter performed in the presence of R2ppUpG-type initiating nucleotides (where R2 is a sugar or phosphate moiety). We successfully employed this strategy to obtain several nucleotide-sugar-capped and uncapped RNAs. The capping reagents developed herein provide easy access to chemical probes to elucidate the biological roles of non-canonical RNA 5' capping.

4.
Nucleic Acids Res ; 50(15): 8807-8817, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35904778

RESUMO

Identification of metabolite caps including FAD on the 5' end of RNA has uncovered a previously unforeseen intersection between cellular metabolism and gene expression. To understand the function of FAD caps in cellular physiology, we characterised the proteins interacting with FAD caps in budding yeast. Here we demonstrate that highly conserved 5'-3' exoribonucleases, Xrn1 and Rat1, physically interact with the RNA 5' FAD cap and both possess FAD cap decapping (deFADding) activity and subsequently degrade the resulting RNA. Xrn1 deFADding activity was also evident in human cells indicating its evolutionary conservation. Furthermore, we report that the recently identified bacterial 5'-3' exoribonuclease RNase AM also possesses deFADding activity that can degrade FAD-capped RNAs in vitro and in Escherichia coli cells. To gain a molecular understanding of the deFADding reaction, an RNase AM crystal structure with three manganese ions coordinated by a sulfate molecule and the active site amino acids was generated that provided details underlying hydrolysis of the FAD cap. Our findings reveal a general propensity for 5'-3' exoribonucleases to hydrolyse and degrade RNAs with 5' end noncanonical caps in addition to their well characterized 5' monophosphate RNA substrates indicating an intrinsic property of 5'-3' exoribonucleases.


Assuntos
Exorribonucleases , Proteínas de Saccharomyces cerevisiae , Exorribonucleases/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Capuzes de RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Biol Chem ; 298(8): 102171, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750211

RESUMO

The 5' N7-methylguanosine cap is a critical modification for mRNAs and many other RNAs in eukaryotic cells. Recent studies have uncovered an RNA 5' capping quality surveillance mechanism, with DXO/Rai1 decapping enzymes removing incomplete caps and enabling the degradation of the RNAs, in a process we also refer to as "no-cap decay." It has also been discovered recently that RNAs in eukaryotes, bacteria, and archaea can have noncanonical caps (NCCs), which are mostly derived from metabolites and cofactors such as NAD, FAD, dephospho-CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleotide polyphosphates. These NCCs can affect RNA stability, mitochondrial functions, and possibly mRNA translation. The DXO/Rai1 enzymes and selected Nudix (nucleotide diphosphate linked to X) hydrolases have been shown to remove NCCs from RNAs through their deNADding, deFADding, deCoAping, and related activities, permitting the degradation of the RNAs. In this review, we summarize the recent discoveries made in this exciting new area of RNA biology.


Assuntos
Capuzes de RNA , Estabilidade de RNA , Endorribonucleases/genética , Endorribonucleases/metabolismo , Biossíntese de Proteínas , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Nat Commun ; 13(1): 889, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173156

RESUMO

The existence of non-canonical nicotinamide adenine diphosphate (NAD) 5'-end capped RNAs is now well established. Nevertheless, the biological function of this nucleotide metabolite cap remains elusive. Here, we show that the yeast Saccharomyces cerevisiae cytoplasmic 5'-end exoribonuclease Xrn1 is also a NAD cap decapping (deNADding) enzyme that releases intact NAD and subsequently degrades the RNA. The significance of Xrn1 deNADding is evident in a deNADding deficient Xrn1 mutant that predominantly still retains its 5'-monophosphate exonuclease activity. This mutant reveals Xrn1 deNADding is necessary for normal growth on non-fermenting sugar and is involved in modulating mitochondrial NAD-capped RNA levels and may influence intramitochondrial NAD levels. Our findings uncover a contribution of mitochondrial NAD-capped RNAs in overall NAD regulation with the deNADding activity of Xrn1 fulfilling a central role.


Assuntos
Exorribonucleases/metabolismo , NAD/genética , Capuzes de RNA/metabolismo , RNA Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Exorribonucleases/genética , Mitocôndrias/genética , Capuzes de RNA/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Cereb Cortex ; 32(7): 1494-1507, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34467373

RESUMO

Homozygous mutations in the gene encoding the scavenger mRNA-decapping enzyme, DcpS, have been shown to underlie developmental delay and intellectual disability. Intellectual disability is associated with both abnormal neocortical development and mRNA metabolism. However, the role of DcpS and its scavenger decapping activity in neuronal development is unknown. Here, we show that human neurons derived from patients with a DcpS mutation have compromised differentiation and neurite outgrowth. Moreover, in the developing mouse neocortex, DcpS is required for the radial migration, polarity, neurite outgrowth, and identity of developing glutamatergic neurons. Collectively, these findings demonstrate that the scavenger mRNA decapping activity contributes to multiple pivotal roles in neural development and further corroborate that mRNA metabolism and neocortical pathologies are associated with intellectual disability.


Assuntos
Endorribonucleases , Neurogênese , Animais , Humanos , Camundongos , Crescimento Neuronal , RNA Mensageiro
8.
Nat Commun ; 12(1): 2259, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859191

RESUMO

SOD1 is known as the major cytoplasmic superoxide dismutase and an anticancer target. However, the role of SOD1 in cancer is not fully understood. Herein we describe the generation of an inducible Sod1 knockout in KRAS-driven NSCLC mouse model. Sod1 knockout markedly reduces tumor burden in vivo and blocks growth of KRAS mutant NSCLC cells in vitro. Intriguingly, SOD1 is enriched in the nucleus and notably in the nucleolus of NSCLC cells. The nuclear and nucleolar, not cytoplasmic, form of SOD1 is essential for lung cancer cell proliferation. Moreover, SOD1 interacts with PeBoW complex and controls its assembly necessary for pre-60S ribosomal subunit maturation. Mechanistically, SOD1 regulates co-localization of PeBoW with and processing of pre-rRNA, and maturation of cytoplasmic 60S ribosomal subunits in KRAS mutant lung cancer cells. Collectively, our study unravels a nuclear SOD1 function essential for ribosome biogenesis and proliferation in KRAS-driven lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Biogênese de Organelas , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Superóxido Dismutase-1/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Pulmão/citologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Proteínas Proto-Oncogênicas p21(ras)/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Superóxido Dismutase-1/genética
9.
Proc Natl Acad Sci U S A ; 117(32): 19245-19253, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32727897

RESUMO

Regulation of enzymatic 5' decapping of messenger RNA (mRNA), which normally commits transcripts to their destruction, has the capacity to dynamically reshape the transcriptome. For example, protection from 5' decapping promotes accumulation of mRNAs into processing (P) bodies-membraneless, biomolecular condensates. Such compartmentalization of mRNAs temporarily removes them from the translatable pool; these repressed transcripts are stabilized and stored until P-body dissolution permits transcript reentry into the cytosol. Here, we describe regulation of mRNA stability and P-body dynamics by the inositol pyrophosphate signaling molecule 5-InsP7 (5-diphosphoinositol pentakisphosphate). First, we demonstrate 5-InsP7 inhibits decapping by recombinant NUDT3 (Nudix [nucleoside diphosphate linked moiety X]-type hydrolase 3) in vitro. Next, in intact HEK293 and HCT116 cells, we monitored the stability of a cadre of NUDT3 mRNA substrates following CRISPR-Cas9 knockout of PPIP5Ks (diphosphoinositol pentakisphosphate 5-kinases type 1 and 2, i.e., PPIP5K KO), which elevates cellular 5-InsP7 levels by two- to threefold (i.e., within the physiological rheostatic range). The PPIP5K KO cells exhibited elevated levels of NUDT3 mRNA substrates and increased P-body abundance. Pharmacological and genetic attenuation of 5-InsP7 synthesis in the KO background reverted both NUDT3 mRNA substrate levels and P-body counts to those of wild-type cells. Furthermore, liposomal delivery of a metabolically resistant 5-InsP7 analog into wild-type cells elevated levels of NUDT3 mRNA substrates and raised P-body abundance. In the context that cellular 5-InsP7 levels normally fluctuate in response to changes in the bioenergetic environment, regulation of mRNA structure by this inositol pyrophosphate represents an epitranscriptomic control process. The associated impact on P-body dynamics has relevance to regulation of stem cell differentiation, stress responses, and, potentially, amelioration of neurodegenerative diseases and aging.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Fosfatos de Inositol/metabolismo , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Hidrolases Anidrido Ácido/genética , Células HEK293 , Humanos , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Capuzes de RNA/genética , Estabilidade de RNA , RNA Mensageiro/genética
10.
Nucleic Acids Res ; 48(12): 6788-6798, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32432673

RESUMO

We recently reported the presence of nicotinamide adenine dinucleotide (NAD)-capped RNAs in mammalian cells and a role for DXO and the Nudix hydrolase Nudt12 in decapping NAD-capped RNAs (deNADding) in cells. Analysis of 5'caps has revealed that in addition to NAD, mammalian RNAs also contain other metabolite caps including flavin adenine dinucleotide (FAD) and dephosphoCoA (dpCoA). In the present study we systematically screened all mammalian Nudix proteins for their potential deNADing, FAD cap decapping (deFADding) and dpCoA cap decapping (deCoAping) activity. We demonstrate that Nudt16 is a novel deNADding enzyme in mammalian cells. Additionally, we identified seven Nudix proteins-Nudt2, Nudt7, Nudt8, Nudt12, Nudt15, Nudt16 and Nudt19, to possess deCoAping activity in vitro. Moreover, our screening revealed that both mammalian Nudt2 and Nudt16 hydrolyze FAD-capped RNAs in vitro with Nudt16 regulating levels of FAD-capped RNAs in cells. All decapping activities identified hydrolyze the metabolite cap substrate within the diphosphate linkage. Crystal structure of human Nudt16 in complex with FAD at 2.7 Å resolution provide molecular insights into the binding and metal-coordinated hydrolysis of FAD by Nudt16. In summary, our study identifies novel cellular deNADding and deFADding enzymes and establishes a foundation for the selective functionality of the Nudix decapping enzymes on non-canonical metabolite caps.


Assuntos
Flavina-Adenina Dinucleotídeo/química , Pirofosfatases/genética , Pirofosfatases/ultraestrutura , Capuzes de RNA/genética , Coenzima A/química , Coenzima A/genética , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/genética , Humanos , NAD/química , NAD/ultraestrutura , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/classificação , Capuzes de RNA/química , Capuzes de RNA/ultraestrutura , Nudix Hidrolases
11.
Nucleic Acids Res ; 48(11): 6136-6148, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32374864

RESUMO

In eukaryotes, the DXO/Rai1 enzymes can eliminate most of the incomplete and non-canonical NAD caps through their decapping, deNADding and pyrophosphohydrolase activities. Here, we report that these enzymes can also remove FAD and dephospho-CoA (dpCoA) non-canonical caps from RNA, and we have named these activities deFADding and deCoAping. The crystal structures of mammalian DXO with 3'-FADP or CoA and fission yeast Rai1 with 3'-FADP provide elegant insight to these activities. FAD and CoA are accommodated in the DXO/Rai1 active site by adopting folded conformations. The flavin of FAD and the pantetheine group of CoA contact the same region at the bottom of the active site tunnel, which undergoes conformational changes to accommodate the different cap moieties. We have developed FAD-capQ to detect and quantify FAD-capped RNAs and determined that FAD caps are present on short RNAs (with less than ∼200 nucleotides) in human cells and that these RNAs are stabilized in the absence of DXO.


Assuntos
Coenzima A/metabolismo , Exorribonucleases/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Kluyveromyces/enzimologia , Proteínas Nucleares/metabolismo , Capuzes de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Animais , Exorribonucleases/química , Exorribonucleases/genética , Flavina-Adenina Dinucleotídeo/análise , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos , Modelos Moleculares , NAD/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Capuzes de RNA/análise , Especificidade por Substrato , Transcrição Gênica
12.
Nat Chem Biol ; 15(6): 575-582, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31101919

RESUMO

We recently demonstrated that mammalian cells harbor nicotinamide adenine dinucleotide (NAD)-capped messenger RNAs that are hydrolyzed by the DXO deNADding enzyme. Here, we report that the Nudix protein Nudt12 is a second mammalian deNADding enzyme structurally and mechanistically distinct from DXO and targeting different RNAs. The crystal structure of mouse Nudt12 in complex with the deNADding product AMP and three Mg2+ ions at 1.6 Å resolution provides insights into the molecular basis of the deNADding activity in the NAD pyrophosphate. Disruption of the Nudt12 gene stabilizes transfected NAD-capped RNA in cells, and its endogenous NAD-capped mRNA targets are enriched in those encoding proteins involved in cellular energetics. Furthermore, exposure of cells to nutrient or environmental stress manifests changes in NAD-capped RNA levels that are selectively responsive to Nudt12 or DXO, respectively, indicating an association of deNADding to cellular metabolism.


Assuntos
NAD/metabolismo , Pirofosfatases/metabolismo , RNA Mensageiro/metabolismo , Humanos , NAD/química , Pirofosfatases/química , Pirofosfatases/genética , RNA Mensageiro/química
13.
Elife ; 72018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30526856

RESUMO

Bacterial and eukaryotic nuclear RNA polymerases (RNAPs) cap RNA with the oxidized and reduced forms of the metabolic effector nicotinamide adenine dinucleotide, NAD+ and NADH, using NAD+ and NADH as non-canonical initiating nucleotides for transcription initiation. Here, we show that mitochondrial RNAPs (mtRNAPs) cap RNA with NAD+ and NADH, and do so more efficiently than nuclear RNAPs. Direct quantitation of NAD+- and NADH-capped RNA demonstrates remarkably high levels of capping in vivo: up to ~60% NAD+ and NADH capping of yeast mitochondrial transcripts, and up to ~15% NAD+ capping of human mitochondrial transcripts. The capping efficiency is determined by promoter sequence at, and upstream of, the transcription start site and, in yeast and human cells, by intracellular NAD+ and NADH levels. Our findings indicate mtRNAPs serve as both sensors and actuators in coupling cellular metabolism to mitochondrial transcriptional outputs, sensing NAD+ and NADH levels and adjusting transcriptional outputs accordingly.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Capuzes de RNA/genética , RNA Mitocondrial/genética , Transcrição Gênica , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Mitocôndrias/genética , NAD/genética , Oxirredução , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição
14.
Org Lett ; 20(23): 7650-7655, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30479128

RESUMO

We report the chemical synthesis of a set of nicotinamide adenine dinucleotide (NAD) cap analogues containing chemical modifications that reduce their susceptibility to NAD-RNA-degrading enzymes. These analogues can be incorporated into transcripts in a similar way as NAD. Biochemical characterization of RNAs carrying these caps with DXO, NudC, and Nudt12 enzymes led to the identification of compounds that can be instrumental in unraveling so far unaddressed biological aspects of NAD-RNAs.


Assuntos
Adenina/farmacologia , NAD/antagonistas & inibidores , Niacinamida/farmacologia , Capuzes de RNA/antagonistas & inibidores , Adenina/análogos & derivados , Adenina/química , Conformação Molecular , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/química , Capuzes de RNA/metabolismo
15.
RNA ; 24(10): 1418-1425, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30045887

RESUMO

RNA 5' cap structures comprising the metabolic effector nicotinamide adenine dinucleotide (NAD) have been identified in diverse organisms. Here we report a simple, two-step procedure to detect and quantitate NAD-capped RNA, termed "NAD-capQ." By use of NAD-capQ we quantitate NAD-capped RNA levels in Escherichia coli, Saccharomyces cerevisiae, and human cells, and we measure increases in NAD-capped RNA levels in cells from all three organisms harboring disruptions in their respective "deNADding" enzymes. We further show that NAD-capped RNA levels in human cells respond to changes in cellular NAD concentrations, indicating that NAD capping provides a mechanism for human cells to directly sense and respond to alterations in NAD metabolism. Our findings establish NAD-capQ as a versatile, rapid, and accessible methodology to detect and quantitate 5'-NAD caps on endogenous RNA in any organism.


Assuntos
Colorimetria , NAD/química , Capuzes de RNA/química , Capuzes de RNA/genética , RNA/química , RNA/genética , Alelos , Linhagem Celular , Colorimetria/métodos , Humanos , Espaço Intracelular , Espectrometria de Massas , Mutação , NAD/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética
16.
Mol Cell ; 70(3): 553-564.e9, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681497

RESUMO

Nucleoside-containing metabolites such as NAD+ can be incorporated as 5' caps on RNA by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase (RNAP). Here, we report CapZyme-seq, a high-throughput-sequencing method that employs NCIN-decapping enzymes NudC and Rai1 to detect and quantify NCIN-capped RNA. By combining CapZyme-seq with multiplexed transcriptomics, we determine efficiencies of NAD+ capping by Escherichia coli RNAP for ∼16,000 promoter sequences. The results define preferred transcription start site (TSS) positions for NAD+ capping and define a consensus promoter sequence for NAD+ capping: HRRASWW (TSS underlined). By applying CapZyme-seq to E. coli total cellular RNA, we establish that sequence determinants for NCIN capping in vivo match the NAD+-capping consensus defined in vitro, and we identify and quantify NCIN-capped small RNAs (sRNAs). Our findings define the promoter-sequence determinants for NCIN capping with NAD+ and provide a general method for analysis of NCIN capping in vitro and in vivo.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , NAD/metabolismo , Regiões Promotoras Genéticas/genética , Capuzes de RNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica/genética , Nucleotídeos/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , Transcriptoma/genética
17.
Trends Cell Biol ; 28(6): 454-464, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29544676

RESUMO

A hallmark of eukaryotic mRNAs has long been the 5'-end m7G cap. This paradigm was recently amended by recent reports that Saccharomyces cerevisiae and mammalian cells also contain mRNAs carrying a novel nicotinamide adenine dinucleotide (NAD+) cap at their 5'-end. The presence of an NAD+ cap on mRNA uncovers a previously unknown mechanism for controlling gene expression through nucleotide metabolite-directed mRNA turnover. In contrast to the m7G cap that stabilizes mRNA, the NAD+ cap targets RNA for rapid decay in mammalian cells through the DXO non-canonical decapping enzyme which removes intact NAD+ from RNA in a process termed 'deNADding'. This review highlights the identification of NAD+ caps, their mode of addition, and their functional significance in cells.


Assuntos
Endorribonucleases/metabolismo , NAD/metabolismo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Animais , Células Eucarióticas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Cell ; 168(6): 1015-1027.e10, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283058

RESUMO

Eukaryotic mRNAs generally possess a 5' end N7 methyl guanosine (m7G) cap that promotes their translation and stability. However, mammalian mRNAs can also carry a 5' end nicotinamide adenine dinucleotide (NAD+) cap that, in contrast to the m7G cap, does not support translation but instead promotes mRNA decay. The mammalian and fungal noncanonical DXO/Rai1 decapping enzymes efficiently remove NAD+ caps, and cocrystal structures of DXO/Rai1 with 3'-NADP+ illuminate the molecular mechanism for how the "deNADding" reaction produces NAD+ and 5' phosphate RNA. Removal of DXO from cells increases NAD+-capped mRNA levels and enables detection of NAD+-capped intronic small nucleolar RNAs (snoRNAs), suggesting NAD+ caps can be added to 5'-processed termini. Our findings establish NAD+ as an alternative mammalian RNA cap and DXO as a deNADding enzyme modulating cellular levels of NAD+-capped RNAs. Collectively, these data reveal that mammalian RNAs can harbor a 5' end modification distinct from the classical m7G cap that promotes rather than inhibits RNA decay.


Assuntos
Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Animais , Endorribonucleases/metabolismo , Células HEK293 , Humanos , Camundongos , NAD/metabolismo , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-27425147

RESUMO

Removal of the 5' end cap is a critical determinant controlling mRNA stability and efficient gene expression. Removal of the cap is exquisitely controlled by multiple direct and indirect regulators that influence association with the cap and the catalytic step. A subset of these factors directly stimulate activity of the decapping enzyme, while others influence remodeling of factors bound to mRNA and indirectly stimulate decapping. Furthermore, the components of the general decapping machinery can also be recruited by mRNA-specific regulatory proteins to activate decapping. The Nudix hydrolase, Dcp2, identified as a first decapping enzyme, cleaves capped mRNA and initiates 5'-3' degradation. Extensive studies on Dcp2 led to broad understanding of its activity and the regulation of transcript specific decapping and decay. Interestingly, seven additional Nudix proteins possess intrinsic decapping activity in vitro and at least two, Nudt16 and Nudt3, are decapping enzymes that regulate mRNA stability in cells. Furthermore, a new class of decapping proteins within the DXO family preferentially function on incompletely capped mRNAs. Importantly, it is now evident that each of the characterized decapping enzymes predominantly modulates only a subset of mRNAs, suggesting the existence of multiple decapping enzymes functioning in distinct cellular pathways. WIREs RNA 2017, 8:e1379. doi: 10.1002/wrna.1379 For further resources related to this article, please visit the WIREs website.


Assuntos
Endorribonucleases/metabolismo , Estabilidade de RNA/fisiologia , Animais , Humanos
20.
Nature ; 541(7637): 371-375, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28002401

RESUMO

Internal bases in mRNA can be subjected to modifications that influence the fate of mRNA in cells. One of the most prevalent modified bases is found at the 5' end of mRNA, at the first encoded nucleotide adjacent to the 7-methylguanosine cap. Here we show that this nucleotide, N6,2'-O-dimethyladenosine (m6Am), is a reversible modification that influences cellular mRNA fate. Using a transcriptome-wide map of m6Am we find that m6Am-initiated transcripts are markedly more stable than mRNAs that begin with other nucleotides. We show that the enhanced stability of m6Am-initiated transcripts is due to resistance to the mRNA-decapping enzyme DCP2. Moreover, we find that m6Am is selectively demethylated by fat mass and obesity-associated protein (FTO). FTO preferentially demethylates m6Am rather than N6-methyladenosine (m6A), and reduces the stability of m6Am mRNAs. Together, these findings show that the methylation status of m6Am in the 5' cap is a dynamic and reversible epitranscriptomic modification that determines mRNA stability.


Assuntos
Adenosina/análogos & derivados , Capuzes de RNA/química , Capuzes de RNA/metabolismo , Estabilidade de RNA , Adenosina/química , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Endorribonucleases/metabolismo , Epigênese Genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Células HEK293 , Meia-Vida , Humanos , Masculino , Metilação , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Especificidade por Substrato , Sítio de Iniciação de Transcrição , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...