Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(2): 618-639, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947118

RESUMO

The recent uptick in the approval of ex vivo cell therapies highlights the relevance of lentivirus (LV) as an enabling viral vector of modern medicine. As labile biologics, however, LVs pose critical challenges to industrial biomanufacturing. In particular, LV purification-currently reliant on filtration and anion-exchange or size-exclusion chromatography-suffers from long process times and low yield of transducing particles, which translate into high waiting time and cost to patients. Seeking to improve LV downstream processing, this study introduces peptides targeting the enveloped protein Vesicular stomatitis virus G (VSV-G) to serve as affinity ligands for the chromatographic purification of LV particles. An ensemble of candidate ligands was initially discovered by implementing a dual-fluorescence screening technology and a targeted in silico approach designed to identify sequences with high selectivity and tunable affinity. The selected peptides were conjugated on Poros resin and their LV binding-and-release performance was optimized by adjusting the flow rate, composition, and pH of the chromatographic buffers. Ligands GKEAAFAA and SRAFVGDADRD were selected for their high product yield (50%-60% of viral genomes; 40%-50% of HT1080 cell-transducing particles) upon elution in PIPES buffer with 0.65 M NaCl at pH 7.4. The peptide-based adsorbents also presented remarkable values of binding capacity (up to 3·109 TU per mL of resin, or 5·1011 vp per mL of resin, at the residence time of 1 min) and clearance of host cell proteins (up to a 220-fold reduction of HEK293 HCPs). Additionally, GKEAAFAA demonstrated high resistance to caustic cleaning-in-place (0.5 M NaOH, 30 min) with no observable loss in product yield and quality.


Assuntos
Lentivirus , Estomatite Vesicular , Animais , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Células HEK293 , Peptídeos/metabolismo , Vesiculovirus/genética , Vetores Genéticos
2.
Anal Chem ; 95(27): 10368-10375, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37368953

RESUMO

The global pandemic caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people and paralyzed healthcare systems worldwide. Developing rapid and accurate tests to detect and quantify anti-SARS-CoV-2 antibodies in complex fluids is critical to (i) track and address the spread of SARS-CoV-2 variants with different virulence and (ii) support the industrial manufacturing and clinical administration of anti-SARS-CoV-2 therapeutic antibodies. Conventional immunoassays, such as lateral flow, ELISA, and surface plasmon resonance (SPR), are either qualitative or, when quantitative, are laborious and expensive and suffer from high variability. Responding to these challenges, this study evaluates the performance of the Dual-Affinity Ratiometric Quenching (DARQ) assay for the quantification of anti-SARS-CoV-2 antibodies in bioprocess harvests and intermediate fractions (i.e., a Chinese hamster ovary (CHO) cell culture supernatant and a purified eluate) and human fluids (i.e., saliva and plasma). Monoclonal antibodies targeting the SARS-CoV-2 nucleocapsid as well as the spike protein of the delta and omicron variants are adopted as model analytes. Additionally, conjugate pads loaded with dried protein were studied as an at-line quantification method that can be used in clinical or manufacturing laboratories. Our results indicate that the DARQ assay is a highly reproducible (coefficient of variation ∼0.5-3%) and rapid (<10 min) test, whose sensitivity (∼0.23-2.5 ng/mL), limit of detection (23-250 ng/mL), and dynamic range (70-1300 ng/mL) are independent of sample complexity, thus representing a valuable tool for monitoring anti-SARS-CoV-2 antibodies.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Células CHO , Cricetulus , Anticorpos Antivirais
3.
Anal Chem ; 92(24): 16274-16283, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33236892

RESUMO

More than 100 monoclonal antibodies (mAbs) are in industrial and clinical development to treat myriad diseases. Accurate quantification of mAbs in complex media, derived from industrial and patient samples, is vital to determine production efficiency or pharmacokinetic properties. To date, mAb quantification requires time and labor-intensive assays. Herein, we report a novel dual-affinity ratiometric quenching (DARQ) assay, which combines selective biorecognition and quenching of fluorescence signals for rapid and sensitive quantification of therapeutic monoclonal antibodies (mAbs). The reported assay relies on the affinity complexation of the target mAb by the corresponding antigens and Protein L (PrL, which targets the Fab region of the antibody), respectively, labeled with fluorescein and rhodamine. Within the affinity complex, the mAb acts as a scaffold framing the labeled affinity tags (PrL and antigen) in a molecular proximity that results in ratiometric quenching of their fluorescence emission. Notably, the decrease in fluorescence emission intensity is linearly dependent upon mAb concentration in solution. Control experiments conducted with one affinity tag only, two tags labeled with equal fluorophores, or two tags labeled with fluorophores of discrete absorbance and emission bands exhibited significantly reduced effect. The assay was evaluated in noncompetitive (pure mAb) and competitive conditions (mAb in a Chinese Hamster Ovary (CHO) cell culture harvest). The "DARQ" assay is highly reproducible (coefficient of variation ∼0.8-0.7%) and rapid (5 min), and its sensitivity (∼0.2-0.5 ng·mL-1), limit of detection (75-119 ng·mL-1), and dynamic range (300-1600 ng·mL-1) are independent of the presence of CHO host cell proteins.


Assuntos
Anticorpos Monoclonais/análise , Espectrometria de Fluorescência/métodos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos/imunologia , Células CHO , Cricetulus
4.
Langmuir ; 34(33): 9798-9809, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30088940

RESUMO

The excess heat capacity (Δ C p) of mixtures of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (Chol) is examined in detail in large unilamellar vesicles (LUVs), both experimentally, using differential scanning calorimetry (DSC), and theoretically, using a three-state Ising model. The model postulates that DPPC can access three conformational states: gel, liquid-disordered (Ld), and liquid-ordered (Lo). The Lo state, however, is only available if coupled with interaction with an adjacent Chol. Δ C p was calculated using Monte Carlo simulations on a lattice and compared to experiment. The DSC results in LUVs are compared with literature data on multilamellar vesicles (MLVs). The enthalpy change of the complete phase transition from gel to Ld is identical in LUVs and MLVs, and the melting temperatures ( Tm) are similar. However, the DSC curves in LUVs are significantly broader, and the maxima of Δ C p are accordingly smaller. The parameters in the Ising model were chosen to match the DSC curves in LUVs and the nearest-neighbor recognition (NNR) data. The model reproduces the NNR data very well. It also reproduces the phase transition in DPPC, the freezing point depression induced by Chol, and the broad component of Δ C p in DPPC/Chol LUVs. However, there is a sharp component, between 5 and 15 mol % Chol, that the model does not reproduce. The broad component of Δ C p becomes dominant as Chol concentration increases, indicating that it involves melting of the Lo phase. Because the simulations reproduce this component, the conclusions regarding the nature of the phase transition at high Chol concentrations and the structure of the Lo phase are important: there is no true phase separation in DPPC/Chol LUVs. There are large domains of gel and Lo phase coexisting below Tm of DPPC, but above Tm the three states of DPPC are mixed with Chol, although clusters persist.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Termodinâmica , Lipossomas Unilamelares/química , Varredura Diferencial de Calorimetria , Modelos Químicos , Método de Monte Carlo , Transição de Fase , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA