Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 9(95): eadj7970, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701193

RESUMO

Understanding the mechanisms that regulate T cell immunity is critical for the development of effective therapies for diseases associated with T cell dysfunction, including autoimmune diseases, chronic infections, and cancer. Co-inhibitory "checkpoint molecules," such as programmed cell death protein-1, balance excessive or prolonged immune activation by T cell-intrinsic signaling. Here, by screening for mediators of natural killer (NK) cell recognition on T cells, we identified the immunoglobulin superfamily ligand B7H6 to be highly expressed by activated T cells, including patient-infused CD19-targeting chimeric antigen receptor (CAR) T cells. Unlike other checkpoint molecules, B7H6 mediated NKp30-dependent recognition and subsequent cytolysis of activated T cells by NK cells. B7H6+ T cells were prevalent in the tissue and blood of several diseases, and their abundance in tumor tissue positively correlated with clinical response in a cohort of patients with immune checkpoint inhibitor-treated esophageal cancer. In humanized mouse models, NK cell surveillance via B7H6 limited the persistence and antitumor activity of CAR T cells, and its genetic deletion enhanced T cell proliferation and persistence. Together, we provide evidence of B7H6 protein expression by activated T cells and suggest the B7H6-NKp30 axis as a therapeutically actionable NK cell-dependent immune checkpoint that regulates human T cell function.


Assuntos
Antígenos B7 , Células Matadoras Naturais , Linfócitos T , Humanos , Células Matadoras Naturais/imunologia , Animais , Camundongos , Antígenos B7/imunologia , Linfócitos T/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Ativação Linfocitária/imunologia , Feminino , Neoplasias Esofágicas/imunologia
2.
Neuro Oncol ; 26(2): 266-278, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37715782

RESUMO

BACKGROUND: Neuroligin 4 X-linked (NLGN4X) harbors a human leukocyte antigen (HLA)-A*02-restricted tumor-associated antigen, overexpressed in human gliomas, that was found to induce specific cytotoxic T cell responses following multi-peptide vaccination in patients with newly diagnosed glioblastoma. METHODS: T cell receptor (TCR) discovery was performed using droplet-based single-cell TCR sequencing of NLGN4X-tetramer-sorted T cells postvaccination. The identified TCR was delivered to Jurkat T cells and primary human T cells (NLGN4X-TCR-T). Functional profiling of NLGN4X-TCR-T was performed by flow cytometry and cytotoxicity assays. Therapeutic efficacy of intracerebroventricular NLGN4X-TCR-T was assessed in NOD scid gamma (NSG) major histocompatibility complex (MHC) I/II knockout (KO) (NSG MHC I/II KO) mice bearing NLGN4X-expressing experimental gliomas. RESULTS: An HLA-A*02-restricted vaccine-induced T cell receptor specifically binding NLGN4X131-139 was applied for preclinical therapeutic use. Reactivity, cytotoxicity, and polyfunctionality of this NLGN4X-specific TCR are demonstrated in various cellular models. Intracerebroventricular administration of NLGN4X-TCR-T prolongs survival and leads to an objective response rate of 44.4% in experimental glioma-bearing NSG MHC I/II KO mice compared to 0.0% in control groups. CONCLUSION: NLGN4X-TCR-T demonstrate efficacy in a preclinical glioblastoma model. On a global scale, we provide the first evidence for the therapeutic retrieval of vaccine-induced human TCRs for the off-the-shelf treatment of glioblastoma patients.Keywords cell therapy | glioblastoma | T cell receptor | tumor antigen.


Assuntos
Vacinas Anticâncer , Glioblastoma , Camundongos , Animais , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Vacinas Anticâncer/uso terapêutico , Vacinas de Subunidades Antigênicas , Receptores de Antígenos de Linfócitos T , Linfócitos T , Antígenos de Neoplasias/genética , Moléculas de Adesão Celular Neuronais
3.
Theranostics ; 13(15): 5170-5182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908732

RESUMO

Rationale: Intrinsic brain tumors, such as gliomas are largely resistant to immunotherapies including immune checkpoint blockade. Adoptive cell therapies (ACT) including chimeric antigen receptor (CAR) or T cell receptor (TCR)-transgenic T cell therapy targeting glioma-associated antigens are an emerging field in glioma immunotherapy. However, imaging techniques for non-invasive monitoring of adoptively transferred T cells homing to the glioma microenvironment are currently lacking. Methods: Ultrasmall iron oxide nanoparticles (NP) can be visualized non-invasively by magnetic resonance imaging (MRI) and dedicated MRI sequences such as T2* mapping. Here, we develop a protocol for efficient ex vivo labeling of murine and human TCR-transgenic and CAR T cells with iron oxide NPs. We assess labeling efficiency and T cell functionality by flow cytometry and transmission electron microscopy (TEM). NP labeled T cells are visualized by MRI at 9.4 T in vivo after adoptive T cell transfer and correlated with 3D models of cleared brains obtained by light sheet microscopy (LSM). Results: NP are incorporated into T cells in subcellular cytoplasmic vesicles with high labeling efficiency without interfering with T cell viability, proliferation and effector function as assessed by cytokine secretion and antigen-specific killing assays in vitro. We further demonstrate that adoptively transferred T cells can be longitudinally monitored intratumorally by high field MRI at 9.4 Tesla in a murine glioma model with high sensitivity. We find that T cell influx and homogenous spatial distribution of T cells within the TME as assessed by T2* imaging predicts tumor response to ACT whereas incomplete T cell coverage results in treatment resistance. Conclusion: This study showcases a rational for monitoring adoptive T cell therapies non-invasively by iron oxide NP in gliomas to track intratumoral T cell influx and ultimately predict treatment outcome.


Assuntos
Glioma , Linfócitos T , Humanos , Animais , Camundongos , Glioma/diagnóstico por imagem , Glioma/terapia , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral
4.
Cancer Cell ; 41(11): 1829-1834, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37863064

RESUMO

With the advances in immunogenomics, the majority of tumor-specific antigens were found to be recognized by T helper cells (THCs). This observation led to the development of long epitope vaccines in various cancers. Mechanistically, we are still gaining a deeper understanding of the mode of action of THCs as precision antitumor agonists. Here, we discuss the specific cellular mechanisms of THC functions in glioma immunology and contextualize current advances in anti-glioma vaccination exploiting THCs.


Assuntos
Vacinas Anticâncer , Glioma , Humanos , Linfócitos T Auxiliares-Indutores , Antígenos de Neoplasias , Vacinação , Epitopos
5.
Cancer Cell ; 41(4): 711-725.e6, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898378

RESUMO

Bispecific T cell engagers (TCEs) have shown promise in the treatment of various cancers, but the immunological mechanism and molecular determinants of primary and acquired resistance to TCEs remain poorly understood. Here, we identify conserved behaviors of bone marrow-residing T cells in multiple myeloma patients undergoing BCMAxCD3 TCE therapy. We show that the immune repertoire reacts to TCE therapy with cell state-dependent clonal expansion and find evidence supporting the coupling of tumor recognition via major histocompatibility complex class I (MHC class I), exhaustion, and clinical response. We find the abundance of exhausted-like CD8+ T cell clones to be associated with clinical response failure, and we describe loss of target epitope and MHC class I as tumor-intrinsic adaptations to TCEs. These findings advance our understanding of the in vivo mechanism of TCE treatment in humans and provide the rationale for predictive immune-monitoring and conditioning of the immune repertoire to guide future immunotherapy in hematological malignancies.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Linfócitos T CD8-Positivos , Imunoterapia , Células Clonais/patologia , Anticorpos Biespecíficos/uso terapêutico
6.
Cancer Cell ; 41(2): 235-251.e9, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638785

RESUMO

Cancer immunotherapy critically depends on fitness of cytotoxic and helper T cell responses. Dysfunctional cytotoxic T cell states in the tumor microenvironment (TME) are a major cause of resistance to immunotherapy. Intratumoral myeloid cells, particularly blood-borne myeloids (bbm), are key drivers of T cell dysfunction in the TME. We show here that major histocompatibility complex class II (MHCII)-restricted antigen presentation on bbm is essential to control the growth of brain tumors. Loss of MHCII on bbm drives dysfunctional intratumoral tumor-reactive CD8+ T cell states through increased chromatin accessibility and expression of Tox, a critical regulator of T cell exhaustion. Mechanistically, MHCII-dependent activation of CD4+ T cells restricts myeloid-derived osteopontin that triggers a chronic activation of NFAT2 in tumor-reactive CD8+ T cells. In summary, we provide evidence that MHCII-restricted antigen presentation on bbm is a key mechanism to directly maintain functional cytotoxic T cell states in brain tumors.


Assuntos
Neoplasias Encefálicas , Linfócitos T Citotóxicos , Humanos , Apresentação de Antígeno , Linfócitos T CD8-Positivos , Antígenos de Histocompatibilidade Classe II/metabolismo , Microambiente Tumoral
7.
Neuro Oncol ; 25(2): 263-276, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35609569

RESUMO

BACKGROUND: Dendritic cells (DC), the most potent professional antigen presenting cells capable of effective cross-presentation, have been demonstrated to license T helper cells to induce antitumor immunity in solid tumors. Specific DC subtypes are recruited to the injured brain by microglial chemokines, locally adapting to distinct transcriptional profiles. In isocitrate dehydrogenase (IDH) type 1 mutant gliomas, monocyte-derived macrophages have recently been shown to display an attenuated intratumoral antigen presentation capacity as consequence of the local accumulation of the oncometabolite R-2-hydroxyglutarate. The functionality and the contribution of DC to the IDH-mutant tumor microenvironment (TME) remains unclear. METHODS: Frequencies and intratumoral phenotypes of human DC in IDH-wildtype (IDHwt) and -mutant high-grade gliomas are comparatively assessed by transcriptomic and proteomic profiling. DC functionality is investigated in experimental murine glioblastomas expressing the model antigen ovalbumin. Single-cell sequencing-based pseudotime analyses and spectral flow cytometric analyses are used to profile DC states longitudinally. RESULTS: DC are present in primary and recurrent high-grade gliomas and interact with other immune cell types within the TME. In murine glioblastomas, we find an IDH-status-associated major histocompatibility class I-restricted cross-presentation of tumor antigens by DC specifically in the tumor but not in meninges or secondary lymphoid organs of tumor-bearing animals. In single-cell sequencing-based pseudotime and longitudinal spectral flow cytometric analyses, we demonstrate an IDH-status-dependent differential, exclusively microenvironmental education of DC. CONCLUSIONS: Glioma-associated DCs are relevantly abundant in human IDHwt and mutant tumors. Glioma IDH mutations result in specifically educated, dysfunctional DCs via paracrine reprogramming of infiltrating monocytes, providing the basis for combinatorial immunotherapy concepts against IDH mutant gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Proteômica , Linfócitos T/metabolismo , Glioma/patologia , Neoplasias Encefálicas/patologia , Células Dendríticas , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Microambiente Tumoral
8.
Neurooncol Adv ; 4(1): vdac140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36196364

RESUMO

Background: Glioblastoma (GBM) is characterized by low numbers of glioma-infiltrating lymphocytes (GIL) with a dysfunctional phenotype. Whether this dysfunctional phenotype is fixed or can be reversed upon ex vivo culturing is poorly understood. The aim of this study was to assess T cell receptor (TCR)-dynamics and -specificities as well as determinants of in vitro GIL expansion by sequencing-based technologies and functional assays to explore the use of GIL for cell therapy. Methods: By means of flow cytometry, T cell functionality in GIL cultures was assessed from 9 GBM patients. TCR beta sequencing (TCRB-seq) was used for TCR repertoire profiling before and after in vitro expansion. Microarrays or RNA sequencing (RNA-seq) were performed from 6 micro-dissected GBM tissues and healthy brain RNA to assess the individual expression of GBM-associated antigens (GAA). GIL reactivity against in silico predicted tumor-associated antigens (TAA) and patient-individual GAA was assessed by ELISpot assay. Combined ex vivo single cell (sc)TCR-/RNA-seq and post-expansion TCRB-seq were used to evaluate transcriptional signatures that determine GIL expansion. Results: Human GIL regains cellular fitness upon in vitro expansion. Profound TCR dynamics were observed during in vitro expansion and only in one of six GIL cultures, reactivity against GAA was observed. Paired ex vivo scTCR/RNA-seq and TCRB-seq revealed predictive transcriptional signatures that determine GIL expansion. Conclusions: Profound TCR repertoire dynamics occur during GIL expansion. Ex vivo transcriptional T cell states determine expansion capacity in gliomas. Our observation has important implications for the use of GIL for cell therapy including genetic manipulation to maintain both antigen specificity and expansion capacity.

9.
J Immunother Cancer ; 10(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36252999

RESUMO

Multiple myeloma (MM) is a hematological malignancy originating from malignant and clonally expanding plasma cells. MM can be molecularly stratified, and its clonal evolution deciphered based on the Ig heavy and light chains of the respective malignant plasma cell clone. Of all MM subtypes, IgE type MM accounts for only <0.1% of cases and is associated with an aggressive clinical course and consequentially dismal prognosis. In such malignancies, adoptive transfer of autologous lymphocytes specifically targeting presented (neo)epitopes encoded by either somatically mutated or specifically overexpressed genes has resulted in substantial objective clinical regressions even in relapsed/refractory disease. However, there are no data on the genetic and immunological characteristics of this rare and aggressive entity. Here, we comprehensively profiled IgE type kappa MM on a genomic and immune repertoire level by integrating DNA- and single-cell RNA sequencing and comparative profiling against non-IgE type MM samples. We demonstrate distinct pathophysiological mechanisms as well as novel opportunities for targeting IgE type MM. Our data further provides the rationale for patient-individualized neoepitope-targeting cell therapy in high tumor mutation burden MM.


Assuntos
Mieloma Múltiplo , DNA , Epitopos , Humanos , Mieloma Múltiplo/genética , Fenótipo , Linfócitos T
10.
Clin Cancer Res ; 28(2): 378-389, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782365

RESUMO

PURPOSE: Gliomas are intrinsic brain tumors with a high degree of constitutive and acquired resistance to standard therapeutic modalities such as radiotherapy and alkylating chemotherapy. Glioma subtypes are recognized by characteristic mutations. Some of these characteristic mutations have shown to generate immunogenic neoepitopes suitable for targeted immunotherapy. EXPERIMENTAL DESIGN: Using peptide-based ELISpot assays, we screened for potential recurrent glioma neoepitopes in MHC-humanized mice. Following vaccination, droplet-based single-cell T-cell receptor (TCR) sequencing from established T-cell lines was applied for neoepitope-specific TCR discovery. Efficacy of intraventricular TCR-transgenic T-cell therapy was assessed in a newly developed glioma model in MHC-humanized mice induced by CRISPR-based delivery of tumor suppressor-targeting guide RNAs. RESULTS: We identify recurrent capicua transcriptional repressor (CIC) inactivating hotspot mutations at position 215 CICR215W/Q as immunogenic MHC class II (MHCII)-restricted neoepitopes. Vaccination of MHC-humanized mice resulted in the generation of robust MHCII-restricted mutation-specific T-cell responses against CICR215W/Q. Adoptive intraventricular transfer of CICR215W-specific TCR-transgenic T cells exert antitumor responses against CICR215W-expressing syngeneic gliomas. CONCLUSIONS: The integration of immunocompetent MHC-humanized orthotopic glioma models in the discovery of shared immunogenic glioma neoepitopes facilitates the identification and preclinical testing of human leukocyte antigen (HLA)-restricted neoepitope-specific TCRs for locoregional TCR-transgenic T-cell adoptive therapy.


Assuntos
Glioma , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Animais , Modelos Animais de Doenças , Glioma/genética , Glioma/terapia , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Camundongos , Recidiva Local de Neoplasia , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T
11.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884607

RESUMO

Despite extensive preclinical research on immunotherapeutic approaches, malignant glioma remains a devastating disease of the central nervous system for which standard of care treatment is still confined to resection and radiochemotherapy. For peripheral solid tumors, immune checkpoint inhibition has shown substantial clinical benefit, while promising preclinical results have yet failed to translate into clinical efficacy for brain tumor patients. With the advent of high-throughput sequencing technologies, tumor antigens and corresponding T cell receptors (TCR) and antibodies have been identified, leading to the development of chimeric antigen receptors (CAR), which are comprised of an extracellular antibody part and an intracellular T cell receptor signaling part, to genetically engineer T cells for antigen recognition. Due to efficacy in other tumor entities, a plethora of CARs has been designed and tested for glioma, with promising signs of biological activity. In this review, we describe glioma antigens that have been targeted using CAR T cells preclinically and clinically, review their drawbacks and benefits, and illustrate how the emerging field of transgenic TCR therapy can be used as a potent alternative for cell therapy of glioma overcoming antigenic limitations.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Glioma/imunologia , Glioma/patologia , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
12.
Neurooncol Adv ; 3(1): vdab147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34738084

RESUMO

BACKGROUND: Glioblastomas, the most common primary malignant brain tumors, are considered immunologically cold malignancies due to growth in an immune sanctuary site. While peptide vaccines have shown to generate intra-tumoral antigen-specific T cells, the identification of these tumor-specific T cells is challenging and requires detailed analyses of tumor tissue. Several studies have shown that CNS antigens may be transported via lymphatic drainage to cervical lymph nodes, where antigen-specific T-cell responses can be generated. Therefore, we investigated whether glioma-draining lymph nodes (TDLN) may constitute a reservoir of tumor-reactive T cells. METHODS: We addressed our hypothesis by flow cytometric analyses of chicken ovalbumin (OVA)-specific CD8+ T cells as well as T-cell receptor beta (TCRß) next-generation-sequencing (TCRß-NGS) of T cells from tumor tissue, TDLN, spleen, and inguinal lymph nodes harvested from experimental mouse GL261 glioma models. RESULTS: Longitudinal dextramer-based assessment of specific CD8+ T cells from TDLN did not show tumor model antigen reactivity. Unbiased immunogenomic analysis revealed a low overlap of TCRß sequences from glioma-infiltrating CD8+ T cells between mice. Enrichment scores, calculated by the ratio of productive frequencies of the different TCRß-CDR3 amino-acid (aa) rearrangements of CD8+ T cells derived from tumor, TDLN, inguinal lymph nodes, and spleen demonstrated a higher proportion of tumor-associated TCR in the spleen compared to TDLN. CONCLUSIONS: In experimental glioblastoma, our data did not provide evidence that glioma-draining cervical lymph nodes are a robust reservoir for spontaneous glioma-specific T cells highlighting the requirement for detailed analyses of glioma-infiltrating T cells for the discovery of tumor-specific TCR.

13.
Pharmaceutics ; 13(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34575418

RESUMO

Sepsis is the number one cause of death in intensive care units. This life-threatening condition is caused by bacterial infections and triggered by endotoxins of Gram-negative bacteria that leads to an overreaction of the immune system. The synthetic anti-lipopolysaccharide peptide Pep19-2.5 is a promising candidate for the treatment of sepsis as it binds sepsis-inducing lipopolysaccharides and thus prevents initiation of septic shock. For clinical evaluation precise quantification of the peptide in blood and tissue is required. As the peptide is not extractable from biological samples by commonly used methods there is a need for a new analysis method that does not rely on extraction of the peptide. In order to quantify the peptide by mass spectrometry, the peptide was synthesized containing 13C9,15N1-labeled phenylalanine residues. This modification offers high stability during acidic hydrolysis. Following acidic hydrolysis of the samples, the concentration of 13C9,15N1-labeled phenylalanine determined by LC-MS could be unambiguously correlated to the content of Pep19-2.5. Further experiments validated the accuracy of the data. Moreover, the quantification of Pep19-2.5 in different tissues (as studied in Wistar rats) was shown to provide comparable results to the results obtained with radioactively-labeled (14C) Pep19-2.5- Radioactive labeling is considered as the gold standard for quantification of compounds that refrain from reliable extraction methods. This novel method represents a valuable procedure for the determination of Pep19-2.5 and sticky peptides with unpredictable extraction properties in general.

14.
Oncoimmunology ; 10(1): 1920739, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34026332

RESUMO

Dendritic cell (DC) vaccination has proven to be an effective and safe adjuvant for cancer immunotherapies. As the presence of DCs within the tumor microenvironment promotes adaptive antitumor immunity, enhancement of DC migration toward the tumor microenvironment following DC vaccination might represent one possible approach to increase its therapeutic efficacy. While recent findings suggest the activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) as critical regulator of DC migration in the context of autoimmune diseases, we aimed to investigate the impact of Arc/Arg3.1 expression for DC-based cancer vaccines. To this end, DC migration capacity as well as the induction of T cell-mediated antitumor immunity was assessed in an experimental B16 melanoma model with Arc/Arg3.1-/- and Arc/Arg3.1-expressing BMDCs applied as a subcutaneous vaccine. While antigen presentation on DCs was critical for unleashing effective T cell mediated antitumor immune responses, Arc/Arg3.1 expression enhanced DC migration toward the tumor and secondary lymphoid organs. Moreover, Arc/Arg3.1-expressing BMDCs shape the tumor immune microenvironment by facilitating tumor recruitment of antigen-specific effector T cells. Thus, Arc/Arg3.1 may represent a novel therapeutic target in DCs in order to increase the therapeutic efficacy of DC vaccination.


Assuntos
Vacinas Anticâncer , Melanoma Experimental , Animais , Citoesqueleto , Células Dendríticas , Melanoma Experimental/genética , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Vacinação
15.
Nat Cancer ; 2(7): 723-740, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35121943

RESUMO

The dynamics and phenotypes of intratumoral myeloid cells during tumor progression are poorly understood. Here we define myeloid cellular states in gliomas by longitudinal single-cell profiling and demonstrate their strict control by the tumor genotype: in isocitrate dehydrogenase (IDH)-mutant tumors, differentiation of infiltrating myeloid cells is blocked, resulting in an immature phenotype. In late-stage gliomas, monocyte-derived macrophages drive tolerogenic alignment of the microenvironment, thus preventing T cell response. We define the IDH-dependent tumor education of infiltrating macrophages to be causally related to a complex re-orchestration of tryptophan metabolism, resulting in activation of the aryl hydrocarbon receptor. We further show that the altered metabolism of IDH-mutant gliomas maintains this axis in bystander cells and that pharmacological inhibition of tryptophan metabolism can reverse immunosuppression. In conclusion, we provide evidence of a glioma genotype-dependent intratumoral network of resident and recruited myeloid cells and identify tryptophan metabolism as a target for immunotherapy of IDH-mutant tumors.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Glioma/genética , Humanos , Imunoterapia , Isocitrato Desidrogenase/genética , Triptofano/uso terapêutico , Microambiente Tumoral/genética
16.
Nat Commun ; 11(1): 931, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071302

RESUMO

Intrinsic malignant brain tumors, such as glioblastomas are frequently resistant to immune checkpoint blockade (ICB) with few hypermutated glioblastomas showing response. Modeling patient-individual resistance is challenging due to the lack of predictive biomarkers and limited accessibility of tissue for serial biopsies. Here, we investigate resistance mechanisms to anti-PD-1 and anti-CTLA-4 therapy in syngeneic hypermutated experimental gliomas and show a clear dichotomy and acquired immune heterogeneity in ICB-responder and non-responder tumors. We made use of this dichotomy to establish a radiomic signature predicting tumor regression after pseudoprogression induced by ICB therapy based on serial magnetic resonance imaging. We provide evidence that macrophage-driven ICB resistance is established by CD4 T cell suppression and Treg expansion in the tumor microenvironment via the PD-L1/PD-1/CD80 axis. These findings uncover an unexpected heterogeneity of response to ICB in strictly syngeneic tumors and provide a rationale for targeting PD-L1-expressing tumor-associated macrophages to overcome resistance to ICB.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Glioma/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/imunologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
17.
Diagnosis (Berl) ; 6(2): 151-156, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-30990784

RESUMO

Background Avoiding or correcting a diagnostic error first requires identification of an error and perhaps deciding to revise a diagnosis, but little is known about the factors that lead to revision. Three aspects of reflective practice, seeking Alternative explanations, exploring the Consequences of missing these alternative diagnoses, identifying Traits that may contradict the provisional diagnosis, were incorporated into a three-point diagnostic checklist (abbreviated to ACT). Methods Seventeen first and second year emergency medicine residents from the University of Toronto participated. Participants read up to eight case vignettes and completed the ACT diagnostic checklist. Provisional and final diagnoses and all responses for alternatives, consequences, and traits were individually scored as correct or incorrect. Additionally, each consequence was scored on a severity scale from 0 (not severe) to 3 (very severe). Average scores for alternatives, consequences, and traits and the severity rating for each consequence were entered into a binary logistic regression analysis with the outcome of revised or retained provisional diagnosis. Results Only 13% of diagnoses were revised. The binary logistic regression revealed that three scores derived from the ACT tool responses were associated with the decision to revise: severity rating of the consequence for missing the provisional diagnosis, the percent correct for identifying consequences, and the percent correct for identifying traits (χ2 = 23.5, df = 6, p < 0.001). The other three factors were not significant predictors. Conclusions Decisions to revise diagnoses may be cued by the detection of contradictory evidence. Education interventions may be more effective at reducing diagnostic error by targeting the ability to detect contradictory information within patient cases.


Assuntos
Lista de Checagem , Diagnóstico , Medicina de Emergência/educação , Serviço Hospitalar de Emergência , Internato e Residência , Tomada de Decisões , Erros de Diagnóstico , Educação de Pós-Graduação em Medicina , Humanos , Ontário
18.
Cell Commun Signal ; 16(1): 88, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466445

RESUMO

BACKGROUND: Depletion of tryptophan and the accumulation of tryptophan metabolites mediated by the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1), trigger immune cells to undergo apoptosis. However, cancer cells in the same microenvironment appear not to be affected. Mechanisms whereby cancer cells resist accelerated tryptophan degradation are not completely understood. We hypothesize that cancer cells co-opt IMPACT (the product of IMPrinted and AnCienT gene), to withstand periods of tryptophan deficiency. METHODS: A range of bioinformatic techniques including correlation and gene set variation analyses was applied to genomic datasets of cancer (The Cancer Genome Atlas) and normal (Genotype Tissue Expression Project) tissues to investigate IMPACT's role in cancer. Survival of IMPACT-overexpressing GL261 glioma cells and their wild type counterparts cultured in low tryptophan media was assessed using fluorescence microscopy and MTT bio-reduction assay. Expression of the Integrated Stress Response proteins was measured using Western blotting. RESULTS: We found IMPACT to be upregulated and frequently amplified in a broad range of clinical cancers relative to their non-malignant tissue counterparts. In a subset of clinical cancers, high IMPACT expression associated with decreased activity of pathways and genes involved in stress response and with increased activity of translational regulation such as the mTOR pathway. Experimental studies using the GL261 glioma line showed that cells engineered to overexpress IMPACT, gained a survival advantage over wild-type lines when cultured under limiting tryptophan concentrations. No significant difference in the expression of proteins in the Integrated Stress Response pathway was detected in tryptophan-deprived GL261 IMPACT-overexpressors compared to that in wild-type cells. IMPACT-overexpressing GL261 cells but not their wild-type counterparts, showed marked enlargement of their nuclei and cytoplasmic area when stressed by tryptophan deprivation. CONCLUSIONS: The bioinformatics data together with our laboratory studies, support the hypothesis that IMPACT mediates a protective mechanism allowing cancer cells to overcome microenvironmental stresses such as tryptophan deficiency.


Assuntos
Triptofano/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Biologia Computacional , Metilação de DNA , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Estresse Fisiológico/genética
19.
Nat Med ; 24(8): 1192-1203, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988124

RESUMO

The oncometabolite (R)-2-hydroxyglutarate (R-2-HG) produced by isocitrate dehydrogenase (IDH) mutations promotes gliomagenesis via DNA and histone methylation. Here, we identify an additional activity of R-2-HG: tumor cell-derived R-2-HG is taken up by T cells where it induces a perturbation of nuclear factor of activated T cells transcriptional activity and polyamine biosynthesis, resulting in suppression of T cell activity. IDH1-mutant gliomas display reduced T cell abundance and altered calcium signaling. Antitumor immunity to experimental syngeneic IDH1-mutant tumors induced by IDH1-specific vaccine or checkpoint inhibition is improved by inhibition of the neomorphic enzymatic function of mutant IDH1. These data attribute a novel, non-tumor cell-autonomous role to an oncometabolite in shaping the tumor immune microenvironment.


Assuntos
Glutaratos/metabolismo , Imunidade , Linfócitos T/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioma/genética , Glioma/imunologia , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Mutação/genética , Fatores de Transcrição NFATC/metabolismo , Comunicação Parácrina , Poliaminas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
20.
Can J Surg ; 53(1): 25-31, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20100409

RESUMO

BACKGROUND: Our objective was to identify morphologic trends in elective and emergency endovascular aneurysm repair (EVAR). This work will inform hospitals with endovascular programs about the diameters and lengths of endostents that should be available to efficiently care for patients with these conditions. METHODS: We performed a retrospective review of patients undergoing elective (n = 127) and emergency (n = 17) EVAR. Using computed tomography and 3-dimensional reconstructions, we evaluated the following: diameters of the aneurysm (D3), the aorta at the superior mesenteric (D1) and renal (D2a,b,c; 3 levels) levels, the iliac arteries (D5a,b; right and left) and the aortic bifurcation (D4); lengths from the lowest renal artery to the distal aspect of the aortic neck (H1), to the aortic bifurcation (H3), to the right and left iliac bifurcations (H4a,b); and angles of the origin of the common iliac arteries on the transverse plane (A1). We used descriptive statistics of trends within groups and independent sample t tests. RESULTS: In elective and emergency aneurysm repair, D2max (26, standard deviation [SD] 3, mm v. 30.7 [SD 3] mm), D5a (16 [SD 4.7] mm v. 19.3 [SD 5] mm), D5b (15.3 [SD 4] mm v. 18.1 [SD 3.6] mm), H1 (25.6 [SD 8.6] mm v. 18 [SD 2] mm), H4a (173 [SD 22] mm v. 189.5 [SD 22] mm) and H4b (174 [SD 25] mm v. 190 [SD 14] mm) were significantly different between the 2 groups (p = 0.001, p = 0.006, p = 0.007, p < 0.001, p = 0.05 and p = 0.01, respectively). H3 (118 [SD 17] mm v. 121.5 [SD 13.5] mm) was not significantly different (p = 0.40). In elective patients, A1 identified the right common iliac more frequently anterior relative to the left common iliac (mean 23 degrees , SD 16 degrees). CONCLUSION: Significant anatomic differences between elective and emergency patients will require hospitals to stock separate endovascular devices to treat abdominal aortic aneurysms in both groups.


Assuntos
Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/cirurgia , Artéria Ilíaca/patologia , Desenho de Prótese , Aorta Abdominal/diagnóstico por imagem , Implante de Prótese Vascular , Procedimentos Cirúrgicos Eletivos , Tratamento de Emergência , Humanos , Artéria Ilíaca/diagnóstico por imagem , Ajuste de Prótese , Estudos Retrospectivos , Stents , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...