Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 36(4): e22985, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35225400

RESUMO

Doxorubicin (DOX) is a potent chemotherapeutic agent and has toxic effects on various organs, including the liver. In the current study, we aimed to investigate the effects of bone-marrow-derived mesenchymal stem cell (BM-MSC) administration on DOX-induced hepatotoxicity in rats. 24 Wistar-albino rats were divided into three groups: Control, DOX, and DOX+MSC. DOX (20 mg/kg) was administered to the DOX group. In the DOX + MSC group, BM-MSCs (2 × 106 ) were given through the tail vein following DOX administration. DOX administration led to significant structural liver injury. Besides this, oxidative balance in the liver was impaired following DOX administration. DOX administration also led to an increase in apoptotic cell death in the liver. Structural and oxidative changes were significantly alleviated with the administration of BM-MSCs. Furthermore, BM-MSC administration suppressed excessive apoptotic cell death. Our findings revealed that BM-MSC administration may alleviate DOX-induced liver injury via improving the oxidative status and limiting apoptotic cell death in the liver tissue.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Medula Óssea , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doxorrubicina/toxicidade , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Wistar
2.
PLoS One ; 10(4): e0124837, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25924011

RESUMO

The natural polyphenolic compound resveratrol (3,4,5-trihydroxy-trans-stilbene) has broad spectrum health beneficial activities including antioxidant, anti-inflammatory, anti-aging, anti-cancer, cardioprotective, and neuroprotective effects. Remarkably, resveratrol also induces apoptosis and cellular senescence in primary and cancer cells. Resveratrol's anti-aging effects both in vitro and in vivo attributed to activation of a (NAD)-dependent histone deacetylase family member sirtuin-1 (SIRT1) protein. In mammals seven members (SIRT1-7) of sirtuin family have been identified. Among those, SIRT1 is the most extensively studied with perceptive effects on mammalian physiology and suppression of the diseases of aging. Yet no data has specified the role of sirtuins, under conditions where resveratrol treatment induces senescence. Current study was undertaken to investigate the effects of resveratrol in human primary dermal fibroblasts (BJ) and to clarify the role of sirtuin family members in particular SIRT1 and SIRT2 that are known to be involved in cellular stress responses and cell cycle, respectively. Here, we show that resveratrol decreases proliferation of BJ cells in a time and dose dependent manner. In addition the increase in senescence associated ß-galactosidase (SA-ß-gal) activity and methylated H3K9-me indicate the induction of premature senescence. A significant increase in phosphorylation of γ-H2AX, a surrogate of DNA double strand breaks, as well as in levels of p53, p21CIP1 and p16INK4A is also detected. Interestingly, at concentrations where resveratrol induced premature senescence we show a significant decrease in SIRT1 and SIRT2 levels by Western Blot and quantitative RT-PCR analysis. Conversely inhibition of SIRT1 and SIRT2 via siRNA or sirtinol treatment also induced senescence in BJ fibroblasts associated with increased SA-ß-gal activity, γ-H2AX phosphorylation and p53, p21CIP1 and p16INK4A levels. Interestingly DNA damaging agent doxorubicin also induced senescence in BJ fibroblasts associated with decreased SIRT1/2 levels. In conclusion our data reveal that resveratrol induced premature senescence is associated with SIRT1 and SIRT2 down regulation in human dermal fibroblasts. Here we suggest that the concomitant decline in SIRT1/2 expression in response to resveratrol treatment may be a cause for induction of senescence, which is most likely mediated by a regulatory mechanism activated by DNA damage response.


Assuntos
Senescência Celular/efeitos dos fármacos , Sirtuína 1/biossíntese , Sirtuína 2/biossíntese , Estilbenos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Senescência Celular/genética , Dano ao DNA/genética , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Cultura Primária de Células , Resveratrol
3.
PLoS One ; 9(7): e101064, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24984035

RESUMO

Oncogene induced senescence (OIS) is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR), senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs). We showed here that hypoxia prevents execution of oncogene induced senescence (OIS), through a strong down-regulation of senescence hallmarks, such as SA- ß-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α). In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.


Assuntos
Senescência Celular/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Oncogenes , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Diploide , Regulação para Baixo , Fibroblastos/citologia , Humanos , Hipóxia/metabolismo , Proteína Supressora de Tumor p53/fisiologia
4.
Cancer Cell Int ; 13: 36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23590596

RESUMO

BACKGROUND: Hypoxia inducible factor-1 α (HIF-1α) has been identified as an important novel target in apoptosis resistance of pediatric tumors such as Rhabdomyosarcoma (RMS) and Ewing's sarcoma (ES). Evidence suggests that PI3K/Akt signaling plays a role in regulation of HIF-1α activation as well as apoptosis resistance in various adult tumors. However the relevance of PI3K/Akt signaling in HIF-1bα activation and apoptosis resistance in childhood tumors has not been addressed yet. Thus, this study was to investigate whether PI3K/Akt signaling is involved in hypoxia induced activation of HIF-1α as well as in resistance to hypoxia-induced apoptosis in childhood tumors such as RMS and ES. METHODS: Constitutive activation of PI3K/Akt signaling was analyzed by Western blotting. Hypoxic activation of HIF-1α was determined by Western Blot analysis and electrophoretic mobility shift assay. Apoptosis was determined by flow cytometric analysis of the propidium iodine stained nuclei of cells treated with PI3K inhibitor LY294002 in combination with either TNF-related apoptosis-inducing ligand (TRAIL) or doxorubicin. RESULTS: This study demonstrated that PI3K/Akt signaling was constitutively activated in RMS and ES cell lines, A204 and A673, respectively. Targeting PI3K/Akt signaling by the inhibitor LY294002 (30 µM) significantly decreased the protein expression as well as DNA binding activity of HIF-1α and restored the apoptosis-inducing ability of cells in hypoxia Additionally, pretreatment with LY294002 sensitized A204 and A673 cells to TRAIL or doxorubicin induced apoptosis under hypoxia. CONCLUSION: These results suggest that the constitutively active PI3K/Akt signaling contributes to hypoxic activation of HIF-1α as well as HIF1α-mediated apoptosis resistance in RMS and ES cells under hypoxia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...