Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747524

RESUMO

Electrides are a class of materials consisting of non-nuclear excess electrons as quasi-F centers or Farbe centers within a positively charged lattice framework, and have significant applications in the fields of electrochemistry, spintronics, and electrode materials. Using first-principles quantum mechanical calculations, we have demonstrated exotic electronic structures of zirconium-rich electrides, Zr2X (X = O, Se, and Te), and obtained the quantitative values of charge transfer (oxidation states), and projected density of states associated with the localized quasi F-centers. The localized interstitial anionic electrons exhibit significant charge transfer values of approximately -1.88, -2.01, and -1.79 per atom in Zr2O, Zr2Se, and Zr2Te, respectively, and contribute actively in the electronic band structures and density of states at the Fermi level. From the 2D contour plot of the electron localization function (ELF), it has been predicted that the spatial distribution of the quasi-F centers stabilizes in the form of a one-dimensional pattern, with localized ELF sites interconnected with delocalized electron channels. Further, low work-function values of Zr2X, ranging from 2.7-3.4 eV, confirm the electride properties of these binary compounds, promising applications in electro-catalytic oxidations and anode materials in batteries. These unique electronic properties of anionic electrons free from nuclear binding in Zr2X have not been reported yet in the literature.

2.
J Phys Chem Lett ; 15(18): 4782-4791, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38663021

RESUMO

Inorganic mixed-halogen perovskites exhibit excellent photovoltaic properties and stability; yet, their photoelectric conversion efficiency is limited by inherent surface defects. In this work, we study the impact of defects on properties of CsPbI2Br slabs using first-principles calculations, focusing on specific defects such as I vacancy (VI), I interposition (Ii), and I substitution by Pb (PbI). Our findings reveal that these defects affect the geometric and optoelectronic properties as well as dynamics of charge carriers of slabs. We employ two theoretical frameworks (surface hopping and Redfield theory) of nonadiabatic molecular dynamics simulations to comprehensively study relaxation processes and obtain consistent results. The presence of VI reduces carrier lifetimes, while the influence of PbI on carrier lifetimes is negligible. In contrast, Ii defects lead to prolonged carrier lifetimes. These insights provide valuable guidance for the rational design of perovskite photovoltaic devices, aiming to enhance their efficiency and stability.

3.
J Phys Chem B ; 128(9): 2190-2200, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38386478

RESUMO

The development of reusable polymeric materials inspires an attempt to combine renewable biomass with upcycling to form a biorenewable closed system. It has been reported that 2,5-furandicarboxylic acid (FDCA) can be recovered for recycling when incorporated as monomers into photodegradable polymeric systems. Here, we develop a procedure to better understand the photodegradation reactions combining density functional theory (DFT) based time-dependent excited-state molecular dynamics (TDESMD) studies with machine learning-based quantitative structure-activity relationships (QSAR) methodology. This procedure allows for the unveiling of hidden structural features between active orbitals that affect the rate of photodegradation and is coined InfoTDESMD. Findings show that electrotopological features are influential factors affecting the rate of photodegradation in differing environments. Additionally, statistical validations and knowledge-based analysis of descriptors are conducted to further understand the structural features' influence on the rate of photodegradation of polymeric materials.

4.
J Phys Chem Lett ; 15(2): 471-480, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38190332

RESUMO

Various coordination complexes have been the subject of experimental and theoretical studies in recent decades because of their fascinating photophysical properties. In this work, a combined experimental and computational approach was applied to investigate the optical properties of monocationic Ir(III) complexes. An interpretative machine learning-based quantitative structure-property relationship (ML/QSPR) model was successfully developed that could reliably predict the emission wavelength of the Ir(III) complexes and provide a foundation for the theoretical evaluation of the optical properties of Ir(III) complexes. A hypothesis was proposed to explain the differences in the emission wavelengths between structurally different individual Ir(III) complexes. The efficacy of the developed model was demonstrated by high R2 values of 0.84 and 0.87 for the training and test sets, respectively. It is worth noting that a relationship between the N-N distance in the diimine ligands of the Ir(III) complexes and emission wavelengths is detected. This effect is most probably associated with a degree of distortion in the octahedral geometry of the complexes, resulting in a perturbed ligand field. This combined experimental and computational approach shows great potential for the rational design of new Ir(III) complexes with the desired optical properties. Moreover, the developed methodology could be extended to other transition-metal complexes.

5.
J Phys Chem Lett ; 14(26): 6202-6208, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37382904

RESUMO

Impurities that hinder luminescence are a common problem in the synthesis of nanocrystals, and controlling the synthesis reaction could provide a way to avoid or use impurities beneficially. Excited state molecular dynamics is used to determine how oxygen impurities appear in the plasma synthesis of silicon carbide nanocrystals (SiC NCs). Formation of impurities is studied by considering the intermediate structures in the simulated photoreaction. The results show the most probable bonding patterns of silicon, carbon, and oxygen. These intermediates are used as a basis for studying the luminescence of expected oxygen impurities in SiC NCs, where luminescence is studied by first-principles modeling and density matrix dissipative dynamics based on on-the-fly non-adiabatic couplings and the Redfield tensor. Modeling the dissipation of energy from electronic to nuclear degrees of freedom reveals multiple impurities with significant photoluminescence quantum yields.

6.
Phys Chem Chem Phys ; 25(21): 14757-14765, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602101

RESUMO

Metal clusters with 10 to 100 atoms supported by a solid surface show electronic structure typical of molecules and require ab initio treatments starting from their atomic structure, and they also can display collective electronic phenomena similar to plasmons in metal solids. We have employed ab initio electronic structure results from two different density functionals (PBE and the hybrid HSE06) and a reduced density matrix treatment of the dissipative photodynamics to calculate light absorbance by the large Ag clusters AgN, N = 33, 37(open shell) and N = 32, 34 (closed shell), adsorbed at the Si(111) surface of a slab, and forming nanostructured surfaces. Results on light absorption are quite different for the two functionals, and are presented here for light absorbances using orbitals and energies from the hybrid functional giving correct energy band gaps. Absorption of Ag clusters on Si increases light absorbance versus photon energy by large percentages, with peak increases found in regions of photon energies corresponding to localized plasmons. The present metal clusters are large enough to allow for modelling with continuum dielectric treatments of their medium. A mesoscopic Drude-Lorentz model is presented in a version suitable for the present structures, and provides an interpretation of our results. The calculated range of plasmon energies overlaps with the range of solar photon energies, making the present structures and properties relevant to applications to solar photoabsorption and photocatalysis.

7.
J Phys Chem Lett ; 13(39): 9210-9220, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36170557

RESUMO

Using non-adiabatic dynamics and Redfield theory, we predicted the optical spectra, radiative and nonradiative decay rates, and photoluminescence quantum yields (PLQYs) for In(III) dipyrrin-based complexes (i) with electron-withdrawing (EW) or electron-donating (ED) substituents on the meso-phenyl group and (ii) upon fusing the pyrrin and phenyl rings via saturated or unsaturated bridging to increase structural rigidity. The ED groups lead to a primary π,π* character with a minor intraligand charge transfer (ILCT) contribution to the emissive state, while EW groups increase the ILCT contribution and red-shift the luminescence to ∼1.5 eV. Saturated annulation enhances the PLQYs for complexes with primary π,π* character compared to those of the non-annulated and unsaturated-annulated complexes, while both unsaturated and saturated annulation decrease the PLQYs for complexes with primary ILCT character. We found that PLQY improvement goes beyond a simple concept of structural rigidity. In contrast, the charge transfer character of excitonic states is a key parameter for engineering the NIR emission of In(III) dipyrrin complexes.

8.
Nat Commun ; 13(1): 4439, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915090

RESUMO

Incorporating fluorescent quantum defects in the sidewalls of semiconducting single-wall carbon nanotubes (SWCNTs) through chemical reaction is an emerging route to predictably modify nanotube electronic structures and develop advanced photonic functionality. Applications such as room-temperature single-photon emission and high-contrast bio-imaging have been advanced through aryl-functionalized SWCNTs, in which the binding configurations of the aryl group define the energies of the emitting states. However, the chemistry of binding with atomic precision at the single-bond level and tunable control over the binding configurations are yet to be achieved. Here, we explore recently reported photosynthetic protocol and find that it can control chemical binding configurations of quantum defects, which are often referred to as organic color centers, through the spin multiplicity of photoexcited intermediates. Specifically, photoexcited aromatics react with SWCNT sidewalls to undergo a singlet-state pathway in the presence of dissolved oxygen, leading to ortho binding configurations of the aryl group on the nanotube. In contrast, the oxygen-free photoreaction activates previously inaccessible para configurations through a triplet-state mechanism. These experimental results are corroborated by first principles simulations. Such spin-selective photochemistry diversifies SWCNT emission tunability by controlling the morphology of the emitting sites.

9.
J Phys Chem Lett ; 13(19): 4374-4380, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35544382

RESUMO

The development of reusable polymeric materials inspires an attempt to combine renewable biomass with upcycling to form a biorenewable closed system. It has been reported that 2,5-furandicarboxylic acid (FDCA) can be recovered for recycling when incorporated as monomers into photodegradable polymeric systems. Here, we conduct density functional theory (DFT) studies with periodic boundary conditions on microscopic structures involved in the photodegradation of polymeric chains incorporating FDCA and 2-nitro-1,3-benzenedimethanol. The photodegradation process of polymeric chains is studied using time-dependent excited-state molecular dynamics (TDESMD) in vacuum and aqueous environments. Changes in the photophysical properties for reaction intermediates are characterized by ground-state observables. The distribution of reaction intermediates and products is obtained from TDESMD trajectories using cheminformatics techniques. Results show that a higher degree of polymeric chain degradation is achieved in the vacuum environment. Additionally, one finds that the FDCA molecule is recoverable in the aqueous environment, in qualitative agreement with experimental findings.


Assuntos
Ácidos Dicarboxílicos , Furanos , Biomassa , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/metabolismo , Furanos/química , Simulação de Dinâmica Molecular , Fotólise , Água
10.
J Phys Chem Lett ; 13(19): 4257-4262, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35522138

RESUMO

A theoretical investigation is conducted to describe optoelectronic properties of Fe-doped montmorillonite nanoclay under spin states of low spin (LS), intermediate spin (IS), and high spin (HS). Ground state electronic properties are studied using spin-polarized density functional theory calculations. The nonradiative and radiative relaxation channels of charge carriers are studied by computing nonadiabatic couplings (NACs) using an "on-the-fly" approach from adiabatic molecular dynamics trajectories. The NACs are further processed using a reduced density matrix approach with the Redfield formalism. The computational results are presented for electronic density of states, absorption spectra, charge carrier dynamics, and photoluminescence (PL) by comparing various spin multiplicities. Results on spin α and spin ß components are independent and quite different because of the partial occupation of Fe 3d states. Overall, HS is the most stable with the largest Fe-O distances. One finds different nonradiative relaxation pathways in space and on the time scale for electrons and holes. The Redfield PL reveals obvious Fe 3d-3d transitions for LS and IS.

11.
J Chem Phys ; 156(10): 104705, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35291769

RESUMO

A theoretical treatment based on the equations of motion of an electronic reduced density matrix, and related computational modeling, is used to describe and calculate relaxation times for nanostructured TiO2(110) surfaces, here for Ag and Ag2 adsorbates. The theoretical treatment deals with the preparation of a photoexcited system under two different conditions, by steady light absorption with a cutoff and by a light pulse, and describes the following relaxation of electronic densities. On the computational modeling, results are presented for electronic density of states, light absorbance, and relaxation dynamics, comparing results for Ag and Ag2 adsorbates. The aim of this work is to provide insight on the dynamics and magnitude of relaxation rates for a surface with adsorbed open- and closed-shell Ag species to determine whether the advantages in using them to enhance light absorbance remain valid in the presence of charge density relaxation. Different behaviors can be expected depending on whether the adsorbate particles (Ag metal clusters in our present choice) have electronic open-shell or closed-shell structures. Calculated electron and hole lifetimes are given for pure TiO2(110), Ag/TiO2(110), and Ag2/TiO2(110). The present results, while limited to chosen structures and photon wavelengths, show that relaxation rates are noticeably different for electrons and holes, but comparable in magnitude for pure and adsorbate surfaces. Overall, the introduction of the adsorbates does not lead to rapid loss of charge carriers, while they give large increases in light absorption. This appears to be advantageous for applications to photocatalysis.

12.
J Phys Chem Lett ; 13(2): 686-693, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35023749

RESUMO

Chiroptical properties are of interest for various applications, including structure determination, polarized photodetectors, and spintronics. Inducing chiroptical activity into semiconductors is challenging because of difficulties in creating asymmetric crystal structures. One promising method is to use chirality transfer by deploying chiral organic molecules as capping ligands for nanocrystals. Experimentally, chiral-capped nanocrystals show emergent chiroptical signatures, but the mechanisms for chirality transfer remain unclear. Here we utilize atomistic modeling using time-dependent density functional theory calculations to explore chirality transfer in CsPbX3 (X = Cl, I) clusters capped with chiral diaminocyclohexane (DACH) enantiomers. When DACH enantiomers are bound to the cluster surface, the perovskite optical transitions gain chiral signatures. This observed chirality transfer is best rationalized by chiral molecular dipole-cluster transition dipole coupling. With multiple DACH molecules bound to the cluster surface, anisotropy factors are found to increase proportionally to the surface ligand density, providing mechanistic insight toward improving chiroptical functionality in semiconductor nanomaterials.

13.
J Chem Theory Comput ; 17(11): 7224-7236, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34665621

RESUMO

Lead halide perovskite (LHP) nanocrystals (NCs) show exceptional defect tolerance which has been attributed to their unique electronic structure, where defect energy levels are not introduced inside the fundamental bandgap, and the role of polarons in screening charge carriers from defects. Here, we use ab initio atomistic simulations to explore the interplay between various surface chemistries (A = Cs+, R'NH3+; X = Br-, RCOO-) used to passivate a CsPbBr3 NC surface and their impact on the ground-state (GS) and excited-state (ES) photophysical properties. We investigate pristine fully passivated surfaces and A-X vacancy defects that reflect chemical reactions A+ + X- → AX on the surface, which result in ligand desorption. For each surface configuration, calculations are performed in the GS and lowest ES (L-ES) electronic configurations, approximating polaron formation after photoexcitation. For models with A-X surface vacancies, we find that localized electron surface trap (ST) states emerge ∼100-400 meV below the pristine Se band in the L-ES configuration due to polaronic nuclear reorganization. Surprisingly, these trap states contribute relatively bright Sh → ST spectral features. To test if these surface trap states remain bright in a dynamic (thermal) situation we implement excited-state molecular dynamics simulations. It is found that the surface defected model shows an enhanced nonradiative recombination rate which reduces the photoluminescence quantum yield (PLQY) from 95% for the pristine surface to 75%. This is accompanied by an order of magnitude reduction in PL intensity and a red shift of the transition energy. This study provides more evidence of the defect tolerance of LHP NCs along with evidence of surface trap states contributing to efficient photoluminescence. The observation of relatively bright surface trap states could provide insight into photophysical phenomena, such as size-dependent stretched-exponential photoluminescence decay and Stokes shifts.

14.
J Phys Chem Lett ; 12(32): 7846-7853, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34380317

RESUMO

Covalent functionalization of single-walled carbon nanotubes (SWCNTs) with organic molecules results in red-shifted emissive states associated with sp3-defects in the tube lattice, which facilitate their improved optical functionality, including single-photon emission. The energy of the defect-based electronic excitations (excitons) depends on the molecular adducts, the configuration of the defect, and concentration of defects. Here we model the interactions between two sp3-defects placed at various distances in the (6,5) SWCNT using time-dependent density functional theory. Calculations reveal that these interactions conform to the effective model of J-aggregates for well-spaced defects (>2 nm), leading to a red-shifted and optically allowed (bright) lowest energy exciton. H-aggregate behavior is not observed for any defect orientations, which is beneficial for emission. The splitting between the lowest energy bright and optically forbidden (dark) excitons and the pristine excitonic band are controlled by the single-defect configurations and their axial separation. These findings enable a synthetic design strategy for SWCNTs with tunable near-infrared emission.

15.
J Phys Chem Lett ; 12(31): 7504-7511, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342460

RESUMO

We provide a case-study for thermal grafting of benzenediazonium bromide onto a hydrogenated Si(111) surface using ab initio molecular dynamics (AIMD) calculations. A sequence of reaction steps is identified in the AIMD trajectory, including the loss of N2 from the diazonium salt, proton transfer from the surface to the bromide ion that eliminates HBr, and deposition of the phenyl group onto the surface. We next assess the influence of the phenyl groups on photophysics of hydrogen-terminated Si(111) slabs. The nonadiabatic couplings necessary for a description of the excited-state dynamics are calculated by combining ab initio electronic structures and reduced density matrix formalism with Redfield theory. The phenyl-terminated slab shows reduced nonradiative relaxation and recombination rates of hot charge carriers in comparison with the hydrogen-terminated slab. Altogether, our results provide atomistic insights revealing that (i) the diazonium salt thermally decomposes at the surface allowing the formation of covalently bonded phenyl group, and (ii) the coverage of phenyl groups on the surface slows down charge carrier cooling driven by electron-phonon interactions, which increases photoluminescence efficiency at the near-infrared spectral region.

16.
J Phys Chem B ; 125(31): 8953-8964, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34324337

RESUMO

In this study, we focus on computational predictions of the electronic and optical properties of a one-dimensional periodic model of a single chain of a diketopyrrolopyrrole (DPP)-based conjugated polymer (PDPP3T) as a function of electronic configuration changes due to charge injection. We employ density functional theory (DFT) to explore the ground-state and excited-state electronic properties as well as optical properties influenced by charge injection. We utilize both the Heyd-Scuseria-Ernzerhof (HSE06) and Perdew-Burke-Ernzerhof (PBE) functionals to predict the band gap and compute the absorption spectrum. Our DFT results point out that utilizing the HSE06 functional in conjunction with momentum sampling over the Brillouin zone can appropriately predict the band gap and absorption spectrum in good agreement with experimental data. Moreover, we explore the influence of charge-carrier injection on the electronic configuration of the PDPP3T polymer. Our results indicate that the injection of charge carriers into the PDPP3T semiconducting polymer model greatly affects the electrical properties and ends in a low band gap and high mobility of charge carriers in PDPP3T polymers, offering the potential to tailor the material electronic performance for organic photovoltaic and optoelectronic device applications.

17.
J Phys Chem Lett ; 12(19): 4749-4754, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33983028

RESUMO

Graphene exhibits unique optoelectronic properties originating from the band structure at the Dirac points. It is an ideal model structure to study the electronic and optical properties under the influence of the applied magnetic field. In graphene, electric field, laser pulse, and voltage can create electron dynamics which is influenced by momentum dispersion. However, computational modeling of momentum-influenced electron dynamics under the applied magnetic field remains challenging. Here, we perform computational modeling of the photoexcited electron dynamics achieved in graphene under an applied magnetic field. Our results show that magnetic field leads to local deviation from momentum conservation for charge carriers. With the increasing magnetic field, the delocalization of electron probability distribution increases and forms a cyclotron-like trajectory. Our work facilitates understanding of momentum resolved magnetic field effect on non-equilibrium properties of graphene, which is critical for optoelectronic and photovoltaic applications.

18.
RSC Adv ; 12(1): 78-87, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35424519

RESUMO

The work proposed here aims to describe the dynamics of photoexcited charge carriers at the interface between the perovskite and electron transport layer (ETL) in perovskite solar cells (PSCs) and the effect that the interface morphology has on these dynamics. This is done in an effort to further develop the understanding of these materials so that their chemical composition and morphology may be better utilized to improve PSCs by means of increasing the power conversion efficiency (PCE), maximizing the chemical stability of PSCs to lengthen their lifespan, finding the cheapest and easiest materials to synthesize which have beneficial properties in photovoltaics, etc. This is done by using density functional theory to model the interface and open system Redfield theory to describe the charge carrier dynamics. We find that the charge transfer characteristics at the perovskite/ETL interface depend greatly on the choice of ligands adsorbed on the ETL that act as a bridge between the perovskite and ETL. The two ligand choices discussed here go so far as to determine whether the system will undergo a Förster energy transfer or a Dexter energy transfer upon photoexcitation.

19.
J Phys Chem Lett ; 11(23): 9983-9989, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33179930

RESUMO

Lead halide perovskites have attracted much attention as an active material in solar cells. In this first-principles study, we consider a cesium lead halide perovskite slab interfacing with electron transport and hole transport layers, relevant to the practical photovoltaic architecture. We apply external electric fields normal to the surface of the perovskite slab and explore the induced changes onto optoelectronic properties. It is found that the bandgap increases linearly and the conductivity diminishes exponentially with decreasing electric field strengths. Furthermore, we study the influence of electric fields onto nonradiative relaxation of photoexcited electrons and holes using the reduced density matrix in the formalism of Redfield theory. Our calculations provide relaxation rates and relaxation pathways, illustrating the mechanisms of modulations of electric field strengths onto charge carrier dynamics. Our results show that holes have longer lifetimes than electrons at various external electric fields. It is also found that the patterns of charge carrier dynamics depend on the direction of external electric fields. Specifically, in comparison with the system under zero field, our findings show that (i) the positive electric field facilitates the relaxation of electrons and holes and (ii) the negative electric field facilitates the relaxation of electrons but inhibits the relaxation of holes.

20.
J Phys Chem Lett ; 11(17): 7133-7140, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787334

RESUMO

Using a combination of density-gradient and analytical ultracentrifugation, we studied the photophysical profile of CsPbBr3 nanocrystal (NC) suspensions by separating them into size-resolved fractions. Ultracentrifugation drastically alters the ligand profile of the NCs, which necessitates postprocessing to restore colloidal stability and enhance quantum yield (QY). Rejuvenated fractions show a 50% increase in QY compared to no treatment and a 30% increase with respect to the parent. Our results demonstrate how the NC environment can be manipulated to improve photophysical performance, even after there has been a measurable decline in the response. Size separation reveals blue-emitting fractions, a narrowing of photoluminescence spectra in comparison to the parent, and a crossover from single- to stretched-exponential relaxation dynamics with decreasing NC size. As a function of edge length, L, our results confirm that the photoluminescence peak energy scales a L-2, in agreement with the simplest picture of quantum confinement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...