Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36765816

RESUMO

Brain and spinal tumors affect 1 in 1000 people by 25 years of age, and have diverse histological, biological, anatomical and dissemination characteristics. A mortality of 30-40% means the majority are cured, although two-thirds have life-long disability, linked to accumulated brain injury that is acquired prior to diagnosis, and after surgery or chemo-radiotherapy. Only four drugs have been licensed globally for brain tumors in 40 years and only one for children. Most new cancer drugs in clinical trials do not cross the blood-brain barrier (BBB). Techniques to enhance brain tumor drug delivery are explored in this review, and cover those that augment penetration of the BBB, and those that bypass the BBB. Developing appropriate delivery techniques could improve patient outcomes by ensuring efficacious drug exposure to tumors (including those that are drug-resistant), reducing systemic toxicities and targeting leptomeningeal metastases. Together, this drug delivery strategy seeks to enhance the efficacy of new drugs and enable re-evaluation of existing drugs that might have previously failed because of inadequate delivery. A literature review of repurposed drugs is reported, and a range of preclinical brain tumor models available for translational development are explored.

2.
J Pathol ; 247(4): 422-434, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30565681

RESUMO

The overall survival for patients with primary glioblastoma is very poor. Glioblastoma contains a subpopulation of glioma stem cells (GSC) that are responsible for tumour initiation, treatment resistance and recurrence. PPARα is a transcription factor involved in the control of lipid, carbohydrate and amino acid metabolism. We have recently shown that PPARα gene and protein expression is increased in glioblastoma and has independent clinical prognostic significance in multivariate analyses. In this work, we report that PPARα is overexpressed in GSC compared to foetal neural stem cells. To investigate the role of PPARα in GSC, we knocked down its expression using lentiviral transduction with short hairpin RNA (shRNA). Transduced GSC were tagged with luciferase and stereotactically xenografted into the striatum of NOD-SCID mice. Bioluminescent and magnetic resonance imaging showed that knockdown (KD) of PPARα reduced the tumourigenicity of GSC in vivo. PPARα-expressing control GSC xenografts formed invasive histological phenocopies of human glioblastoma, whereas PPARα KD GSC xenografts failed to establish viable intracranial tumours. PPARα KD GSC showed significantly reduced proliferative capacity and clonogenic potential in vitro with an increase in cellular senescence. In addition, PPARα KD resulted in significant downregulation of the stem cell factors c-Myc, nestin and SOX2. This was accompanied by downregulation of the PPARα-target genes and key regulators of fatty acid oxygenation ACOX1 and CPT1A, with no compensatory increase in glycolytic flux. These data establish the aberrant overexpression of PPARα in GSC and demonstrate that this expression functions as an important regulator of tumourigenesis, linking self-renewal and the malignant phenotype in this aggressive cancer stem cell subpopulation. We conclude that targeting GSC PPARα expression may be a therapeutically beneficial strategy with translational potential as an adjuvant treatment. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , PPAR alfa/metabolismo , RNA Interferente Pequeno/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes/métodos , Humanos , Lentivirus , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Fenótipo , Transdução de Sinais/fisiologia , Transplante Heterólogo , Células Tumorais Cultivadas
3.
Cancer Manag Res ; 10: 3483-3500, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254491

RESUMO

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is a lethal type of pediatric brain tumor that is resistant to conventional chemotherapies. Palbociclib is a putative novel DIPG treatment that restricts the proliferation of rapidly dividing cancer cells via selective inhibition of cyclin-dependent kinase (CDK) 4 and CDK6. However, implementing palbociclib as a monotherapy for DIPG is unfeasible, as CDK4/6 inhibitor resistance is commonplace and palbociclib does not readily cross the blood-brain barrier (BBB) or persist in the central nervous system. To inhibit the growth of DIPG cells, we aimed to use palbociclib in combination with the rapamycin analog temsirolimus, which is known to ameliorate resistance to CDK4/6 inhibitors and inhibit BBB efflux. MATERIALS AND METHODS: We tested palbociclib and temsirolimus in three patient-derived DIPG cell lines. The expression profiles of key proteins in the CDK4/6 and mammalian target of rapamycin (mTOR) signaling pathways were assessed, respectively, to determine feasibility against DIPG. Moreover, we investigated effects on cell viability and examined in vivo drug toxicity. RESULTS: Immunoblot analyses revealed palbociclib and temsirolimus inhibited CDK4/6 and mTOR signaling through canonical perturbation of phosphorylation of the retinoblastoma (RB) and mTOR proteins, respectively; however, we observed noncanonical downregulation of mTOR by palbociclib. We demonstrated that palbociclib and temsirolimus inhibited cell proliferation in all three DIPG cell lines, acting synergistically in combination to further restrict cell growth. Flow cytometric analyses revealed both drugs caused G1 cell cycle arrest, and clonogenic assays showed irreversible effects on cell proliferation. Palbociclib did not elicit neurotoxicity in primary cultures of normal rat hippocampi or when infused into rat brains. CONCLUSION: These data illustrate the in vitro antiproliferative effects of CDK4/6 and mTOR inhibitors in DIPG cells. Direct infusion of palbociclib into the brain, in combination with systemic delivery of temsirolimus, represents a promising new approach to developing a much-needed treatment for DIPG.

4.
J Neurosurg Pediatr ; 22(3): 288-296, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29856296

RESUMO

OBJECTIVE The pan-histone deacetylase inhibitor panobinostat has preclinical efficacy against diffuse intrinsic pontine glioma (DIPG), and the oral formulation has entered a Phase I clinical trial. However, panobinostat does not cross the blood-brain barrier in humans. Convection-enhanced delivery (CED) is a novel neurosurgical drug delivery technique that bypasses the blood-brain barrier and is of considerable clinical interest in the treatment of DIPG. METHODS The authors investigated the toxicity, distribution, and clearance of a water-soluble formulation of panobinostat (MTX110) in a small- and large-animal model of CED. Juvenile male Wistar rats (n = 24) received panobinostat administered to the pons by CED at increasing concentrations and findings were compared to those in animals that received vehicle alone (n = 12). Clinical observation continued for 2 weeks. Animals were sacrificed at 72 hours or 2 weeks following treatment, and the brains were subjected to neuropathological analysis. A further 8 animals received panobinostat by CED to the striatum and were sacrificed 0, 2, 6, or 24 hours after infusion, and their brains explanted and snap-frozen. Tissue-drug concentration was determined by liquid chromatography tandem mass spectrometry (LC-MS/MS). Large-animal toxicity was investigated using a clinically relevant MRI-guided translational porcine model of CED in which a drug delivery system designed for humans was used. Panobinostat was administered at 30 µM to the ventral pons of 2 juvenile Large White-Landrace cross pigs. The animals were subjected to clinical and neuropathological analysis, and findings were compared to those obtained in controls after either 1 or 2 weeks. Drug distribution was determined by LC-MS/MS in porcine white and gray matter immediately after CED. RESULTS There were no clinical or neuropathological signs of toxicity up to an infused concentration of 30 µM in both small- and large-animal models. The half-life of panobinostat in rat brain after CED was 2.9 hours, and the drug was observed to be distributed in porcine white and gray matter with a volume infusion/distribution ratio of 2 and 3, respectively. CONCLUSIONS CED of water-soluble panobinostat, up to a concentration of 30 µM, was not toxic and was distributed effectively in normal brain. CED of panobinostat warrants clinical investigation in patients with DIPG.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Tronco Encefálico/tratamento farmacológico , Convecção , Glioma/tratamento farmacológico , Panobinostat/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Proteínas de Ligação ao Cálcio/metabolismo , Cromatografia Líquida , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Proteínas dos Microfilamentos/metabolismo , Panobinostat/farmacocinética , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Wistar , Suínos , Espectrometria de Massas em Tandem , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Clin Pathol ; 71(8): 695-701, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29463577

RESUMO

AIMS: Histopathological tissue samples are being increasingly used as sources of nucleic acids in molecular pathology translational research. This study investigated the suitability of glioblastoma and control central nervous system (CNS) formalin-fixed paraffin embedded (FFPE) tissue-derived RNA for gene expression analyses. METHODS: Total RNA was extracted from control (temporal lobe resection tissue) and glioblastoma FFPE tissue samples. RNA purity (260/280 ratios) was determined and RNA integrity number (RIN) analysis was performed. RNA was subsequently used for RT-qPCR for two reference genes, 18S and GAPDH. RESULTS: Reference gene expression was equivalent between control and glioblastoma tissue when using RNA extracted from FFPE tissue, which has key implications for biological normalisation for CNS gene expression studies. There was a significant difference between the mean RIN values of control and glioblastoma FFPE tissue. There was no significant correlation between 260/280 or RIN values versus total RNA yield. The age of the tissue blocks did not influence RNA yield, fragmentation or purity. There was no significant correlation between RIN or 260/280 ratios and mean qPCR cycle threshold for either reference gene. CONCLUSIONS: This study showed that routinely available CNS FFPE tissue is suitable for RNA extraction and downstream gene expression studies, even after 60 months of storage. Substantial RNA fragmentation associated with glioblastoma and control FFPE tissue blocks did not preclude downstream RT-qPCR gene expression analyses. Cross validation with both archival and prospectively collated FFPE specimens is required to further demonstrate that CNS tissue blocks can be used in novel translational molecular biomarker studies.


Assuntos
Neoplasias Encefálicas/genética , Epilepsia do Lobo Temporal/genética , Fixadores/química , Formaldeído/química , Perfilação da Expressão Gênica , Glioblastoma/genética , Inclusão em Parafina , Estabilidade de RNA , RNA Neoplásico/genética , Fixação de Tecidos/métodos , Neoplasias Encefálicas/cirurgia , Estudos de Casos e Controles , Epilepsia do Lobo Temporal/cirurgia , Perfilação da Expressão Gênica/normas , Glioblastoma/cirurgia , Humanos , Inclusão em Parafina/normas , Valor Preditivo dos Testes , Controle de Qualidade , Reprodutibilidade dos Testes , Fatores de Tempo , Fixação de Tecidos/normas
6.
PLoS One ; 12(5): e0176855, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542253

RESUMO

Targeting epigenetic changes in diffuse intrinsic pontine glioma (DIPG) may provide a novel treatment option for patients. This report demonstrates that sodium valproate, a histone deacetylase inhibitor (HDACi), can increase the cytotoxicity of carboplatin in an additive and synergistic manner in DIPG cells in vitro. Sodium valproate causes a dose-dependent decrease in DIPG cell viability in three independent ex vivo cell lines. Furthermore, sodium valproate caused an increase in acetylation of histone H3. Changes in cell viability were consistent with an induction of apoptosis in DIPG cells in vitro, determined by flow cytometric analysis of Annexin V staining and assessment of apoptotic markers by western blotting. Subsequently, immunofluorescent staining of neuronal and glial markers was used to determine toxicity in normal rat hippocampal cells. Pre-treatment of cells with sodium valproate enhanced the cytotoxic effects of carboplatin, in three DIPG cell lines tested. These results demonstrate that sodium valproate causes increased histone H3 acetylation indicative of HDAC inhibition, which is inversely correlated with a reduction in cell viability. Cell viability is reduced through an induction of apoptosis in DIPG cells. Sodium valproate potentiates carboplatin cytotoxicity and prompts further work to define the mechanism responsible for the synergy between these two drugs and determine in vivo efficacy. These findings support the use of sodium valproate as an adjuvant treatment for DIPG.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Anticonvulsivantes/farmacologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Glioma/tratamento farmacológico , Ácido Valproico/farmacologia , Acetilação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Neoplasias do Tronco Encefálico/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Reposicionamento de Medicamentos/métodos , Epigênese Genética/efeitos dos fármacos , Glioma/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ratos
7.
Histopathology ; 70(7): 1030-1043, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27926792

RESUMO

AIMS: PPARα agonists are in current clinical use as hypolipidaemic agents and show significant antineoplastic effects in human glioblastoma models. To date however, the expression of PPARα in large-scale glioblastoma datasets has not been examined. We aimed to investigate the expression of the transcription factor PPARα in primary glioblastoma, the relationship between PPARα expression and patients' clinicopathological features and other molecular markers associated with gliomagenesis. METHODS AND RESULTS: With protein immunoblotting techniques and reverse transcription quantitative real-time PCR, PPARα was found to be significantly overexpressed in glioblastoma compared with control brain tissue (P = 0.032 and P = 0.005). PPARA gene expression was found to be enriched in the classical glioblastoma subtype within The Cancer Genome Atlas (TCGA) dataset. Although not associated with overall survival when assessed by immunohistochemistry, cross-validation with the TCGA dataset and multivariate analyses identified PPARA gene expression as an independent prognostic marker for overall survival (P = 0.042). Finally, hierarchical clustering revealed novel, significant associations between high PPARA expression and a putative set of glioblastoma molecular mediators including EMX2, AQP4, and NTRK2. CONCLUSIONS: PPARα is overexpressed in primary glioblastoma and high PPARA expression functions as an independent prognostic marker in the glioblastoma TCGA dataset. Further studies are required to explore genetic associations with high PPARA expression and to analyse the predictive role of PPARα expression in glioblastoma models in response to PPARα agonists.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , PPAR alfa/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Criança , Feminino , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Humanos , Isocitrato Desidrogenase/genética , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , PPAR alfa/análise , Prognóstico , Modelos de Riscos Proporcionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...