Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29994657

RESUMO

Feasibility of controlling bulk ultrasound (US) thermal ablation using echo decorrelation imaging was investigated in ex vivo bovine liver. The first of two ablation and control procedures used a sequence of constant-intensity sonication cycles, ceased when the minimum echo decorrelation within a control region of interest (ROI) exceeded a predetermined threshold. The second procedure used a variable-intensity sonication sequence, with spatially averaged decorrelation as the stopping criterion. US exposures and echo decorrelation imaging were performed by a linear image-ablate array. Based on preliminary experiments, control ROIs and thresholds for the minimum-decorrelation and average-decorrelation criteria were specified. Controlled trials for the minimum-decorrelation and average-decorrelation criteria were compared with uncontrolled trials employing 9 or 18 cycles of matching sonication sequences. Lesion dimensions, treatment times, ablation rates, and areas under receiver operating characteristic curves were statistically compared. Successfully controlled trials using both criteria required significantly shorter treatment times than corresponding 18-cycle treatments, with better ablation prediction performance than uncontrolled 9-cycle and 18-cycle treatments. Either control approach resulted in greater ablation rate than corresponding 9-cycle or 18-cycle uncontrolled approaches. A post hoc analysis studied the effect of exchanging control criteria between the two series of controlled experiments. For either group, the average time needed to exceed the alternative decorrelation threshold approximately matched the average duration of successfully controlled experimental trials. These results indicate that either approach, using minimum-decorrelation or average-decorrelation criteria, is feasible for control of bulk US ablation. In addition, use of a variable-intensity sonication sequence for bulk US thermal ablation can result in larger ablated regions compared to constant-intensity sonication sequences.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Algoritmos , Animais , Bovinos , Desenho de Equipamento , Retroalimentação , Fígado/diagnóstico por imagem , Fígado/cirurgia
2.
Ultrasound Med Biol ; 44(1): 199-213, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29074273

RESUMO

The ability to control high-intensity focused ultrasound (HIFU) thermal ablation using echo decorrelation imaging feedback was evaluated in ex vivo bovine liver. Sonications were automatically ceased when the minimum cumulative echo decorrelation within the region of interest exceeded an ablation control threshold, determined from preliminary experiments as -2.7 (log-scaled decorrelation per millisecond), corresponding to 90% specificity for local ablation prediction. Controlled HIFU thermal ablation experiments were compared with uncontrolled experiments employing two, five or nine sonication cycles. Means and standard errors of the lesion width, area and depth, as well as receiver operating characteristic curves testing ablation prediction performance, were computed for each group. Controlled trials exhibited significantly smaller average lesion area, width and treatment time than five-cycle or nine-cycle uncontrolled trials and also had significantly greater prediction capability than two-cycle uncontrolled trials. These results suggest echo decorrelation imaging is an effective approach to real-time HIFU ablation control.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fígado/cirurgia , Animais , Bovinos
3.
Ultrasound Med Biol ; 43(1): 176-186, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27712923

RESUMO

In open surgical procedures, image-ablate ultrasound arrays performed thermal ablation and imaging on rabbit liver lobes with implanted VX2 tumor. Treatments included unfocused (bulk ultrasound ablation, N = 10) and focused (high-intensity focused ultrasound ablation, N = 13) exposure conditions. Echo decorrelation and integrated backscatter images were formed from pulse-echo data recorded during rest periods after each therapy pulse. Echo decorrelation images were corrected for artifacts using decorrelation measured prior to ablation. Ablation prediction performance was assessed using receiver operating characteristic curves. Results revealed significantly increased echo decorrelation and integrated backscatter in both ablated liver and ablated tumor relative to unablated tissue, with larger differences observed in liver than in tumor. For receiver operating characteristic curves computed from all ablation exposures, both echo decorrelation and integrated backscatter predicted liver and tumor ablation with statistically significant success, and echo decorrelation was significantly better as a predictor of liver ablation. These results indicate echo decorrelation imaging is a successful predictor of local thermal ablation in both normal liver and tumor tissue, with potential for real-time therapy monitoring.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Neoplasias Hepáticas Experimentais/diagnóstico por imagem , Neoplasias Hepáticas Experimentais/cirurgia , Fígado/diagnóstico por imagem , Fígado/cirurgia , Ultrassonografia/métodos , Animais , Modelos Animais de Doenças , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...