Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 308(2): H108-14, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25416188

RESUMO

Noninvasive cardiac activation imaging of ventricular tachycardia (VT) is important in the clinical diagnosis and treatment of arrhythmias in heart failure (HF) patients. This study investigated the ability of the three-dimensional cardiac electrical imaging (3DCEI) technique for characterizing the activation patterns of spontaneously occurring and norepinephrine (NE)-induced VTs in a newly developed arrhythmogenic canine model of nonischemic HF. HF was induced by aortic insufficiency followed by aortic constriction in three canines. Up to 128 body-surface ECGs were measured simultaneously with bipolar recordings from up to 232 intramural sites in a closed-chest condition. Data analysis was performed on the spontaneously occurring VTs (n=4) and the NE-induced nonsustained VTs (n=8) in HF canines. Both spontaneously occurring and NE-induced nonsustained VTs initiated by a focal mechanism primarily from the subendocardium, but occasionally from the subepicardium of left ventricle. Most focal initiation sites were located at apex, right ventricular outflow tract, and left lateral wall. The NE-induced VTs were longer, more rapid, and had more focal sites than the spontaneously occurring VTs. Good correlation was obtained between imaged activation sequence and direct measurements (averaged correlation coefficient of ∼0.70 over 135 VT beats). The reconstructed initiation sites were ∼10 mm from measured initiation sites, suggesting good localization in such a large animal model with cardiac size similar to a human. Both spontaneously occurring and NE-induced nonsustained VTs had focal initiation in this canine model of nonischemic HF. 3DCEI is feasible to image the activation sequence and help define arrhythmia mechanism of nonischemic HF-associated VTs.


Assuntos
Insuficiência Cardíaca/diagnóstico por imagem , Taquicardia Ventricular/diagnóstico por imagem , Potenciais de Ação , Animais , Cães , Ecocardiografia Doppler , Ecocardiografia Tridimensional , Eletrocardiografia , Insuficiência Cardíaca/fisiopatologia , Taquicardia Ventricular/fisiopatologia
2.
PLoS One ; 9(8): e105379, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25140699

RESUMO

Patients with chronic heart failure (CHF) exhibit a morning surge in ventricular arrhythmias, but the underlying cause remains unknown. The aim of this study was to determine if heart rate dynamics, autonomic input (assessed by heart rate variability (HRV)) and nonlinear dynamics as well as their abnormal time-of-day-dependent oscillations in a newly developed arrhythmogenic canine heart failure model are associated with a morning surge in ventricular arrhythmias. CHF was induced in dogs by aortic insufficiency & aortic constriction, and assessed by echocardiography. Holter monitoring was performed to study time-of-day-dependent variation in ventricular arrhythmias (PVCs, VT), traditional HRV measures, and nonlinear dynamics (including detrended fluctuations analysis α1 and α2 (DFAα1 & DFAα2), correlation dimension (CD), and Shannon entropy (SE)) at baseline, as well as 240 days (240 d) and 720 days (720 d) following CHF induction. LV fractional shortening was decreased at both 240 d and 720 d. Both PVCs and VT increased with CHF duration and showed a morning rise (2.5-fold & 1.8-fold increase at 6 AM-noon vs midnight-6 AM) during CHF. The morning rise in HR at baseline was significantly attenuated by 52% with development of CHF (at both 240 d & 720 d). Morning rise in the ratio of low frequency to high frequency (LF/HF) HRV at baseline was markedly attenuated with CHF. DFAα1, DFAα2, CD and SE all decreased with CHF by 31, 17, 34 and 7%, respectively. Time-of-day-dependent variations in LF/HF, CD, DFA α1 and SE, observed at baseline, were lost during CHF. Thus in this new arrhythmogenic canine CHF model, attenuated morning HR rise, blunted autonomic oscillation, decreased cardiac chaos and complexity of heart rate, as well as aberrant time-of-day-dependent variations in many of these parameters were associated with a morning surge of ventricular arrhythmias.


Assuntos
Adaptação Fisiológica , Arritmias Cardíacas/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca , Fotoperíodo , Disfunção Ventricular/fisiopatologia , Ciclos de Atividade , Animais , Sistema Nervoso Autônomo/fisiologia , Cães , Feminino , Masculino
3.
PLoS One ; 9(4): e94732, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24733352

RESUMO

Cardiac ischemia and reperfusion (I/R) injury occurs because the acute increase in oxidative/inflammatory stress during reperfusion culminates in the death of cardiomyocytes. Currently, there is no drug utilized clinically that attenuates I/R injury in patients. Previous studies have demonstrated degranulation of mast cell contents into the interstitium after I/R. Using a dog model of I/R, we tested the role of chymase, a mast cell protease, in cardiomyocyte injury using a specific oral chymase inhibitor (CI). 15 adult mongrel dogs had left anterior descending artery occlusion for 60 min and reperfusion for 100 minutes. 9 dogs received vehicle and 6 were pretreated with a specific CI. In vivo cardiac microdialysis demonstrated a 3-fold increase in interstitial fluid chymase activity in I/R region that was significantly decreased by CI. CI pretreatment significantly attenuated loss of laminin, focal adhesion complex disruption, and release of troponin I into the circulation. Microarray analysis identified an I/R induced 17-fold increase in nuclear receptor subfamily 4A1 (NR4A1) and significantly decreased by CI. NR4A1 normally resides in the nucleus but can induce cell death on migration to the cytoplasm. I/R caused significant increase in NR4A1 protein expression and cytoplasmic translocation, and mitochondrial degradation, which were decreased by CI. Immunohistochemistry also revealed a high concentration of chymase within cardiomyocytes after I/R. In vitro, chymase added to culture HL-1 cardiomyocytes entered the cytoplasm and nucleus in a dynamin-dependent fashion, and promoted cytoplasmic translocation of NR4A1 protein. shRNA knockdown of NR4A1 on pre-treatment of HL-1 cells with CI significantly decreased chymase-induced cell death and mitochondrial damage. These results suggest that the beneficial effects of an orally active CI during I/R are mediated in the cardiac interstitium as well as within the cardiomyocyte due to a heretofore-unrecognized chymase entry into cardiomyocytes.


Assuntos
Quimases/fisiologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/enzimologia , Ferimentos e Lesões/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Quimases/antagonistas & inibidores , Citoplasma/metabolismo , Cães , Endocitose , Isquemia/patologia , Mastócitos/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeo Hidrolases/química , Traumatismo por Reperfusão , Transferrina/metabolismo , Troponina I/sangue
4.
Lab Invest ; 94(2): 150-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24365747

RESUMO

Neonates and young infants exposed to extracorporeal circulation during extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass are at risk of developing a systemic inflammatory response syndrome with multi-organ dysfunction. We used a piglet model of ECMO to investigate the hypothesis that epithelial apoptosis is an early event that precedes villous damage during ECMO-related bowel injury. Healthy 3-week-old piglets were subjected to ECMO for up to 8 h. Epithelial apoptosis was measured in histopathological analysis, nuclear imaging, and terminal deoxynucleotidyl transferase dUTP nick end labeling. Plasma intestinal fatty acid-binding protein (I-FABP) levels were measured by enzyme immunoassay. Intestinal mast cells were isolated by fluorescence-assisted cell sorting. Cleaved caspase-8, caspase-9, phospho-p38 MAPK, and fas ligand expression were investigated by immunohistochemistry, western blots, and reverse transcriptase-quantitative PCR. Piglet ECMO was associated with increased gut epithelial apoptosis. Extensive apoptotic changes were noted on villus tips and in scattered crypt cells after 2 h of ECMO. After 8 h, the villi were denuded and apoptotic changes were evident in a majority of crypt cells. Increased circulating I-FABP levels, a marker of gut epithelial injury, showed that epithelial injury occurred during ECMO. We detected increased cleaved caspase-8, but not cleaved caspase-9, in epithelial cells indicating that the extrinsic apoptotic pathway was active. ECMO was associated with increased fas ligand expression in intestinal mast cells, which was induced through activation of the p38 mitogen-activated protein kinase. We conclude that epithelial apoptosis is an early event that initiates gut mucosal injury in a piglet model of ECMO.


Assuntos
Apoptose/fisiologia , Oxigenação por Membrana Extracorpórea/efeitos adversos , Mucosa Intestinal/lesões , Mucosa Intestinal/fisiopatologia , Animais , Animais Recém-Nascidos , Western Blotting , Caspase 8/metabolismo , Caspase 9/metabolismo , Núcleo Celular/ultraestrutura , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Proteína Ligante Fas/metabolismo , Proteínas de Ligação a Ácido Graxo/sangue , Citometria de Fluxo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Mucosa Intestinal/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas , Suínos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Heart Rhythm ; 10(10): 1509-15, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23773986

RESUMO

BACKGROUND: Imaging myocardial activation from noninvasive body surface potentials promises to aid in both cardiovascular research and clinical medicine. OBJECTIVE: To investigate the ability of a noninvasive 3-dimensional cardiac electrical imaging technique for characterizing the activation patterns of dynamically changing ventricular arrhythmias during drug-induced QT prolongation in rabbits. METHODS: Simultaneous body surface potential mapping and 3-dimensional intracardiac mapping were performed in a closed-chest condition in 8 rabbits. Data analysis was performed on premature ventricular complexes, couplets, and torsades de pointes (TdP) induced during intravenous administration of clofilium and phenylephrine with combinations of various infusion rates. RESULTS: The drug infusion led to a significant increase in the QT interval (from 175 ± 7 to 274 ± 31 ms) and rate-corrected QT interval (from 183 ± 5 to 262 ± 21 ms) during the first dose cycle. All the ectopic beats initiated by a focal activation pattern. The initial beat of TdPs arose at the focal site, whereas the subsequent beats were due to focal activity from different sites or 2 competing focal sites. The imaged results captured the dynamic shift of activation patterns and were in good correlation with the simultaneous measurements, with a correlation coefficient of 0.65 ± 0.02 averaged over 111 ectopic beats. Sites of initial activation were localized to be ~5 mm from the directly measured initiation sites. CONCLUSIONS: The 3-dimensional cardiac electrical imaging technique could localize the origin of activation and image activation sequence of TdP during QT prolongation induced by clofilium and phenylephrine in rabbits. It offers the potential to noninvasively investigate the proarrhythmic effects of drug infusion and assess the mechanisms of arrhythmias on a beat-to-beat basis.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Ventrículos do Coração/fisiopatologia , Imageamento Tridimensional , Síndrome do QT Longo/induzido quimicamente , Torsades de Pointes/fisiopatologia , Complexos Ventriculares Prematuros/fisiopatologia , Animais , Antiarrítmicos , Cardiotônicos , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Síndrome do QT Longo/complicações , Síndrome do QT Longo/fisiopatologia , Masculino , Fenilefrina , Compostos de Amônio Quaternário , Coelhos , Torsades de Pointes/diagnóstico , Torsades de Pointes/etiologia , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/etiologia
6.
Pacing Clin Electrophysiol ; 36(10): 1265-72, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23713608

RESUMO

BACKGROUND: A subcutaneous implantable cardioverter defibrillator (S-ICD) could ease placement and reduce complications of transvenous ICDs, but requires more energy than transvenous ICDs. Therefore we assessed cardiac and chest wall damage caused by the maximum energy shocks delivered by both types of clinical devices. METHODS: During sinus rhythm, anesthetized pigs (38 ± 6 kg) received an S-ICD (n = 4) and five 80-Joule (J) shocks, or a transvenous ICD (control, n = 4) and five 35-J shocks. An inactive S-ICD electrode was implanted into the same control pigs to study implant trauma. All animals survived 24 hours. Troponin I and creatine kinase muscle isoenzyme (CK-MM) were measured as indicators of myocardial and skeletal muscle injury. Histopathological injury of heart, lungs, and chest wall was assessed using semiquantitative scoring. RESULTS: Troponin I was significantly elevated at 4 hours and 24 hours (22.6 ± 16.3 ng/mL and 3.1 ± 1.3 ng/mL; baseline 0.07 ± 0.09 ng/mL) in control pigs but not in S-ICD pigs (0.12 ± 0.11 ng/mL and 0.13 ± 0.13 ng/mL; baseline 0.06 ± 0.03 ng/mL). CK-MM was significantly elevated in S-ICD pigs after shocks (6,544 ± 1,496 U/L and 9,705 ± 6,240 U/L; baseline 704 ± 398 U/L) but not in controls. Electrocardiogram changes occurred postshock in controls but not in S-ICD pigs. The myocardium and lungs were histologically normal in both groups. Subcutaneous injury was greater in S-ICD compared to controls. CONCLUSION: Although CK-MM suggested more skeletal muscle injury in S-ICD pigs, significant cardiac, lung, and chest wall histopathological changes were not detected in either group. Troponin I data indicate significantly less cardiac injury from 80-J S-ICD shocks than 35-J transvenous shocks.


Assuntos
Desfibriladores Implantáveis/efeitos adversos , Traumatismos por Eletricidade/etiologia , Traumatismos por Eletricidade/patologia , Traumatismos Cardíacos/etiologia , Traumatismos Cardíacos/patologia , Parede Torácica/lesões , Parede Torácica/patologia , Doença Aguda , Animais , Suínos
7.
Circulation ; 126(11): 1328-33, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22865891

RESUMO

BACKGROUND: We tested the hypothesis that the shape of the shock waveform affects not only the defibrillation threshold but also the amount of cardiac damage. METHODS AND RESULTS: Defibrillation thresholds were determined for 11 waveforms-3 ascending-ramp waveforms, 3 descending-ramp waveforms, 3 rectilinear first-phase biphasic waveforms, a Gurvich waveform, and a truncated exponential biphasic waveform-in 6 pigs with electrodes in the right ventricular apex and superior vena cava. The ascending, descending, and rectilinear waveforms had 4-, 8-, and 16-millisecond first phases and a 3.5-millisecond rectilinear second phase that was half the voltage of the first phase. The exponential biphasic waveform had a 60% first-phase and a 50% second-phase tilt. In a second study, we attempted to defibrillate after 10 seconds of ventricular fibrillation with a single ≈30-J shock (6 pigs successfully defibrillated with 8-millisecond ascending, 8-millisecond rectilinear, and truncated exponential biphasic waveforms). Troponin I blood levels were determined before and 2 to 10 hours after the shock. The lowest-energy defibrillation threshold was for the 8-milliseconds ascending ramp (14.6±7.3 J [mean±SD]), which was significantly less than for the truncated exponential (19.6±6.3 J). Six hours after shock, troponin I was significantly less for the ascending-ramp waveform (0.80±0.54 ng/mL) than for the truncated exponential (1.92±0.47 ng/mL) or the rectilinear waveform (1.17±0.45 ng/mL). CONCLUSIONS: The ascending ramp has a significantly lower defibrillation threshold and at ≈30 J causes 58% less troponin I release than the truncated exponential biphasic shock. Therefore, the shock waveform affects both the defibrillation threshold and the amount of cardiac damage.


Assuntos
Desfibriladores Implantáveis , Cardioversão Elétrica/instrumentação , Radiação Eletromagnética/classificação , Troponina I/sangue , Fibrilação Ventricular/terapia , Animais , Desfibriladores Implantáveis/efeitos adversos , Cardioversão Elétrica/métodos , Eletrodos , Feminino , Traumatismos Cardíacos/etiologia , Ventrículos do Coração/fisiopatologia , Masculino , Modelos Animais , Suínos , Fatores de Tempo , Veia Cava Superior/fisiopatologia , Fibrilação Ventricular/fisiopatologia
8.
Am J Physiol Heart Circ Physiol ; 302(1): H244-52, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21984548

RESUMO

Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias.


Assuntos
Estimulação Cardíaca Artificial , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/fisiopatologia , Imageamento Tridimensional , Taquicardia Ventricular/diagnóstico , Função Ventricular Esquerda , Complexos Ventriculares Prematuros/diagnóstico , Imagens com Corantes Sensíveis à Voltagem , Potenciais de Ação , Animais , Modelos Animais de Doenças , Cães , Eletrocardiografia , Feminino , Sistema de Condução Cardíaco/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Masculino , Modelos Cardiovasculares , Norepinefrina , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Taquicardia Ventricular/induzido quimicamente , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Tomografia Computadorizada por Raios X , Complexos Ventriculares Prematuros/induzido quimicamente , Complexos Ventriculares Prematuros/fisiopatologia
9.
Heart Rhythm ; 8(8): 1266-72, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21397046

RESUMO

BACKGROUND: Imaging cardiac excitation within ventricular myocardium is important in the treatment of cardiac arrhythmias and might help improve our understanding of arrhythmia mechanisms. OBJECTIVE: This study sought to rigorously assess the imaging performance of a 3-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of 3D intracardiac mapping from up to 216 intramural sites during paced rhythm and norepinephrine (NE)-induced ventricular tachycardia (VT) in the rabbit heart. METHODS: Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in 13 healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous NE. Computed tomography images were obtained to construct geometry models. RESULTS: The noninvasively imaged activation sequence correlated well with invasively measured counterpart, with a correlation coefficient of 0.72 ± 0.04, and a relative error of 0.30 ± 0.02 averaged over 520 paced beats as well as 73 NE-induced PVCs and VT beats. All PVCs and VT beats initiated in the subendocardium by a nonreentrant mechanism. The averaged distance from the imaged site of initial activation to the pacing site or site of arrhythmias determined from intracardiac mapping was ∼5 mm. For dual-site pacing, the double origins were identified when they were located at contralateral sides of ventricles or at the lateral wall and the apex. CONCLUSION: 3DCEI can noninvasively delineate important features of focal or multifocal ventricular excitation. It offers the potential to aid in localizing the origins and imaging activation sequences of ventricular arrhythmias, and to provide noninvasive assessment of the underlying arrhythmia mechanisms.


Assuntos
Estimulação Cardíaca Artificial , Técnicas Eletrofisiológicas Cardíacas/métodos , Sistema de Condução Cardíaco/fisiopatologia , Imageamento Tridimensional/métodos , Taquicardia Ventricular/fisiopatologia , Animais , Mapeamento Potencial de Superfície Corporal , Eletrocardiografia , Norepinefrina/efeitos adversos , Coelhos , Taquicardia Ventricular/induzido quimicamente , Complexos Ventriculares Prematuros/fisiopatologia
10.
J Cardiovasc Pharmacol ; 57(3): 302-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21266917

RESUMO

Vernakalant is a novel antiarrhythmic agent that has demonstrated clinical efficacy for the treatment of atrial fibrillation. Vernakalant blocks, to various degrees, cardiac sodium and potassium channels with a pattern that suggests atrial selectivity. We hypothesized, therefore, that vernakalant would affect atrial more than ventricular effective refractory period (ERP) and have little or no effect on ventricular defibrillation threshold (DFT). Atrial and ventricular ERP and ventricular DFT were determined before and after treatment with vernakalant or vehicle in 23 anesthetized male mixed-breed pigs. Vernakalant was infused at a rate designed to achieve stable plasma levels similar to those in human clinical trials. Atrial and ventricular ERP were determined by endocardial extrastimuli delivered to the right atria or right ventricle. Defibrillation was achieved using external biphasic shocks delivered through adhesive defibrillation patches placed on the thorax after 10 seconds of electrically induced ventricular fibrillation. The DFT was estimated using the Dixon "up-and-down" method. Vernakalant significantly increased atrial ERP compared with vehicle controls (34 ± 8 versus 9 ± 7 msec, respectively) without significantly affecting ventricular ERP or DFT. This is consistent with atrial selective actions and supports the conclusion that vernakalant does not alter the efficacy of electrical defibrillation.


Assuntos
Anisóis/farmacologia , Antiarrítmicos/farmacologia , Átrios do Coração/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos , Pirrolidinas/farmacologia , Período Refratário Eletrofisiológico/efeitos dos fármacos , Canais de Sódio/efeitos dos fármacos , Função Ventricular/efeitos dos fármacos , Animais , Anisóis/sangue , Anisóis/farmacocinética , Antiarrítmicos/sangue , Antiarrítmicos/farmacocinética , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Cardioversão Elétrica , Átrios do Coração/patologia , Humanos , Masculino , Pirrolidinas/sangue , Pirrolidinas/farmacocinética , Suínos , Função Ventricular/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-22254649

RESUMO

Ventricular arrhythmias represent one of leading causes for sudden cardiac death, a significant problem in public health. Noninvasive imaging of cardiac electric activities associated with ventricular arrhythmias plays an important role in better our understanding of the mechanisms and optimizing the treatment options. The present study aims to rigorously validate a novel three-dimensional (3-D) cardiac electrical imaging (3-DCEI) technique with the aid of 3-D intra-cardiac mapping during paced rhythm and ventricular tachycardia (VT) in the rabbit heart. Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in thirteen healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous norepinephrine (NE). The non-invasively imaged activation sequence correlated well with invasively measured counterparts, with a correlation coefficient of 0.72 and a relative error of 0.30 averaged over all paced beats and NE-induced PVCs and VT beats. The averaged distance from imaged site of initial activation to measured site determined from intra-cardiac mapping was ∼5mm. These promising results suggest that 3-DCEI is feasible to non-invasively localize the origins and image activation sequence of focal ventricular arrhythmias.


Assuntos
Potenciais de Ação , Mapeamento Potencial de Superfície Corporal/métodos , Diagnóstico por Computador/métodos , Sistema de Condução Cardíaco/fisiopatologia , Imageamento Tridimensional/métodos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Animais , Estimulação Cardíaca Artificial , Coelhos
12.
Pediatr Res ; 68(2): 128-33, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20442689

RESUMO

Extracorporeal membrane oxygenation (ECMO) is an important life-support system used in neonates and young children with intractable cardiorespiratory failure. In this study, we used our porcine neonatal model of venoarterial ECMO to investigate whether ECMO causes gut barrier dysfunction. We subjected 3-wk-old previously healthy piglets to venoarterial ECMO for up to 8 h and evaluated gut mucosal permeability, bacterial translocation, plasma levels of bacterial products, and ultrastructural changes in gut epithelium. We also measured plasma lipopolysaccharide (LPS) levels in a small cohort of human neonates receiving ECMO. In our porcine model, ECMO caused a rapid increase in gut mucosal permeability within the first 2 h of treatment, leading to a 6- to 10-fold rise in circulating bacterial products. These changes in barrier function were associated with cytoskeletal condensation in epithelial cells, which was explained by phosphorylation of a myosin II regulatory light chain. In support of these findings, we also detected elevated plasma LPS levels in human neonates receiving ECMO, indicating a similar loss of gut barrier function in these infants. On the basis of these data, we conclude that ECMO is an independent cause of gut barrier dysfunction and bacterial translocation may be an important contributor to ECMO-related inflammation.


Assuntos
Animais Recém-Nascidos , Permeabilidade da Membrana Celular , Oxigenação por Membrana Extracorpórea/efeitos adversos , Mucosa Intestinal/patologia , Animais , Bactérias/metabolismo , Criança , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Expressão Gênica , Humanos , Recém-Nascido , Absorção Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/ultraestrutura , Lipopolissacarídeos/sangue , Suínos , Junções Íntimas/fisiologia , Junções Íntimas/ultraestrutura
13.
Lab Invest ; 90(1): 128-39, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19901912

RESUMO

Extracorporeal membrane oxygenation (ECMO) is a life-saving support system used in neonates and young children with severe cardiorespiratory failure. Although ECMO has reduced mortality in these critically ill patients, almost all patients treated with ECMO develop a systemic inflammatory response syndrome (SIRS) characterized by a 'cytokine storm', leukocyte activation, and multisystem organ dysfunction. We used a neonatal porcine model of ECMO to investigate whether rising plasma concentrations of inflammatory cytokines during ECMO reflect de novo synthesis of these mediators in inflamed tissues, and therefore, can be used to assess the severity of ECMO-related SIRS. Previously healthy piglets (3-week-old) were subjected to venoarterial ECMO for up to 8 h. SIRS was assessed by histopathological analysis, measurement of neutrophil activation (flow cytometry), plasma cytokine concentrations (enzyme immunoassays), and tissue expression of inflammatory genes (PCR/western blots). Mast cell degranulation was investigated by measurement of plasma tryptase activity. Porcine neonatal ECMO was associated with systemic inflammatory changes similar to those seen in human neonates. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-8 (IL-8) concentrations rose rapidly during the first 2 h of ECMO, faster than the tissue expression of these cytokines. ECMO was associated with increased plasma mast cell tryptase activity, indicating that increased plasma concentrations of inflammatory cytokines during ECMO may result from mast cell degranulation and associated release of preformed cytokines stored in mast cells. TNF-alpha and IL-8 concentrations rose faster in plasma than in the peripheral tissues during ECMO, indicating that rising plasma levels of these cytokines immediately after the initiation of ECMO may not reflect increasing tissue synthesis of these cytokines. Mobilization of preformed cellular stores of inflammatory cytokines such as in mucosal mast cells may have an important pathophysiological role in ECMO-related SIRS.


Assuntos
Citocinas/metabolismo , Oxigenação por Membrana Extracorpórea/efeitos adversos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Animais , Animais Recém-Nascidos , Proteína C-Reativa/metabolismo , Degranulação Celular , Citocinas/sangue , Citocinas/genética , Feminino , Hemodinâmica , Mediadores da Inflamação/sangue , Interleucina-8/sangue , Contagem de Leucócitos , Masculino , Mastócitos/metabolismo , Ativação de Neutrófilo , Concentração Osmolar , Suínos , Síndrome de Resposta Inflamatória Sistêmica/patologia , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Fatores de Tempo , Ativação Transcricional , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
14.
Prehosp Emerg Care ; 14(1): 62-70, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19947869

RESUMO

INTRODUCTION: Since the initial development of the defibrillator, there has been concern that, while delivery of a large electric shock would stop fibrillation, it would also cause damage to the heart. This concern has been raised again with the development of the biphasic defibrillator. OBJECTIVE: To compare defibrillation efficacy, postshock cardiac function, and troponin I levels following 150-J and 360-J shocks. METHODS: Nineteen swine were anesthetized with isoflurane and instrumented with pressure catheters in the left ventricle, aorta, and right atrium. The animals were fibrillated for 6 minutes, followed by defibrillation with either low-energy (n = 8) or high-energy (n = 11) shocks. After defibrillation, chest compressions were initiated and continued until return of spontaneous circulation (ROSC). Epinephrine, 0.01 mg/kg every 3 minutes, was given for arterial blood pressure < 50 mmHg. Hemodynamic parameters were recorded for four hours. Transthoracic echocardiography was performed and troponin I levels were measured at baseline and four hours following ventricular fibrillation (VF). RESULTS: Survival rates at four hours were not different between the two groups (low-energy, 5 of 8; high-energy, 7 of 11). Results for arterial blood pressure, positive dP/dt (first derivative of pressure measured over time, a measure of left ventricular contractility), and negative dP/dt at the time of lowest arterial blood pressure (ABP) following ROSC were not different between the two groups (p = not significant [NS]), but were lower than at baseline. All hemodynamic measures returned to baseline by four hours. Ejection fractions, stroke volumes, and cardiac outputs were not different between the two groups at four hours. Troponin I levels at four hours were not different between the two groups (12 +/- 11 ng/mL versus 21 +/- 26 ng/mL, p = NS) but were higher at four hours than at baseline (19 +/- 19 ng/mL versus 0.8 +/- 0.5 ng/mL, p < 0.05, groups combined). CONCLUSION: Biphasic 360-J shocks do not cause more cardiac damage than biphasic 150-J shocks in this animal model of prolonged VF and resuscitation.


Assuntos
Cardioversão Elétrica/métodos , Fibrilação Ventricular/terapia , Animais , Cardioversão Elétrica/instrumentação , Feminino , Masculino , Sus scrofa , Fatores de Tempo , Resultado do Tratamento
15.
Resuscitation ; 80(4): 458-62, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19185411

RESUMO

BACKGROUND: Pauses during chest compressions are thought to have a detrimental effect on resuscitation outcome. The Guidelines 2005 have recently eliminated the post-defibrillation pause. Previous animal studies have shown that multiple pauses of increasing duration decrease resuscitation success. We investigated the effect of varying the characteristics of a single pause near defibrillation on resuscitation outcome. METHODS: Part A: 48 swine were anesthetized, fibrillated for 7min and randomized. Chest compressions were initiated for 90s followed by defibrillation and then resumption of chest compressions. Four groups were studied-G2000: 40s pause beginning 20s before, and ending 20s after defibrillation, A1: a 20s pause just before defibrillation, A2: a 20s pause ending 30s prior to defibrillation, and group A3: a 10s pause ending 30s prior to defibrillation. Part B: 12 swine (Group B) were studied with a protocol identical to Part A but with no pause in chest compressions. Primary endpoint was survival to 4h. RESULTS: The survival rate was significantly higher for groups A1, A2, A3, and B (5/12, 7/12, 5/12, and 5/12 survived) than for the G2000 group (0/12, p<0.05). Survival did not differ significantly among groups A1, A2, A3, and B. CONCLUSIONS: These results suggest that the Guidelines 2005 recommendation to omit the post-shock pulse check and immediately resume chest compressions may be an important resuscitation protocol change. However, these results also suggest that clinical maneuvers further altering a single pre-shock chest compression pause provide no additional benefit.


Assuntos
Cardioversão Elétrica/métodos , Parada Cardíaca/terapia , Massagem Cardíaca/métodos , Fibrilação Ventricular/terapia , Animais , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Feminino , Parada Cardíaca/complicações , Parada Cardíaca/fisiopatologia , Frequência Cardíaca/fisiologia , Masculino , Periodicidade , Suínos , Fatores de Tempo , Fibrilação Ventricular/complicações , Fibrilação Ventricular/fisiopatologia
16.
Cytokine ; 46(1): 12-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19232500

RESUMO

Interleukin-8 (IL-8/CXCL8) is widely expressed in fetal tissues although inflammatory changes are not seen. Circulating IL-8 is comprised of an endothelial-derived [ala-IL-8](77) isoform and another, more potent [ser-IL-8](72) secreted by most other cells; [ala-IL-8](77) can be converted into [ser-IL-8](72) by proteolytic removal of an N-terminal pentapeptide from [ala-IL-8](77). In this study, we show [ala-IL-8](77) is the predominant circulating isoform of IL-8 in premature neonates but not in term neonates/adults, who have [ser-IL-8](72) as the major isoform. This isoform switch from the less potent [ala-IL-8](77) to [ser-IL-8](72) correlates with a maturational increase in the neutrophil chemotactic potency of plasma IL-8. The emergence of [ser-IL-8](72) as the major isoform is likely due to increased plasma [ala-IL-8](77)-convertase activity and/or changes in the cellular sources of IL-8. Developmental changes in IL-8 isoforms may serve to minimize its inflammatory effects in the fetus and also provide a mechanism to restore its full activity after birth.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Interleucina-8/química , Interleucina-8/metabolismo , Adulto , Animais , Animais Recém-Nascidos , Quimiocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Recém-Nascido , Inflamação , Monócitos/metabolismo , Neutrófilos/metabolismo , Isoformas de Proteínas , Suínos
17.
J Biol Chem ; 284(9): 5945-55, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19117939

RESUMO

CXC chemokines with a glutamate-leucine-arginine (ELR) tripeptide motif (ELR(+) CXC chemokines) play an important role in leukocyte trafficking into the tissues. For reasons that are not well elucidated, circulating leukocytes are recruited into the tissues mainly in small vessels such as capillaries and venules. Because ELR(+) CXC chemokines are important mediators of endothelial-leukocyte interaction, we compared chemokine expression by microvascular and aortic endothelium to investigate whether differences in chemokine expression by various endothelial types could, at least partially, explain the microvascular localization of endothelial-leukocyte interaction. Both in vitro and in vivo models indicate that ELR(+) CXC chemokine expression is higher in microvascular endothelium than in aortic endothelial cells. These differences can be explained on the basis of the preferential activation of endothelial chemokine production by low intensity shear stress. Low shear activated endothelial ELR(+) CXC chemokine production via cell surface heparan sulfates, beta(3)-integrins, focal adhesion kinase, the mitogen-activated protein kinase p38beta, mitogen- and stress-associated protein kinase-1, and the transcription factor.


Assuntos
Quimiocinas CXC/metabolismo , Endotélio Vascular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , NF-kappa B/metabolismo , Estresse Mecânico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Aorta/citologia , Aorta/metabolismo , Western Blotting , Ensaio de Desvio de Mobilidade Eletroforética , Endotélio Vascular/citologia , Heparitina Sulfato/metabolismo , Humanos , Cadeias beta de Integrinas/metabolismo , Luciferases/metabolismo , Microvasos/fisiologia , NF-kappa B/genética , Fosfatidilinositol 3-Quinases/metabolismo , Plasmídeos , Interferência de RNA , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Suínos , Quinases Associadas a rho/metabolismo
18.
J Interv Card Electrophysiol ; 24(1): 11-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18839296

RESUMO

BACKGROUND: Recent studies suggest that during ventricular fibrillation (VF) epicardial vessels may be a site of conduction block and the posterior papillary muscle (PPM) in the left ventricle (LV) may be the location of a "mother rotor." The goal of this study was to obtain evidence to support or refute these possibilities. METHODS: Epicardial activation over the posterior LV and right ventricle (RV) was mapped during the first 20 s of electrically induced VF in six open-chest pigs with a 504 electrode plaque covering a 20 cm(2) area centered over the posterior descending artery (PDA). RESULTS: The locations of epicardial breakthrough as well as reentry clustered in time and space during VF. Spatially, reentry occurred significantly more frequently over the LV than the RV in all 48 episodes, and breakthrough clustered near the PPM (p < 0.001). Significant temporal clustering occurred in 79% of breakthrough episodes and 100% of reentry episodes. These temporal clusters occurred at different times so that there was significantly less breakthrough when reentry was present (p < 0.0001). Conduction block occurred significantly more frequently near the PDA than elsewhere. CONCLUSIONS: The PDA is a site of epicardial block which may contribute to VF maintenance. Epicardial breakthrough clusters near the PPM. Reentry also clusters in space but at a separate site. The fact that breakthrough and reentry cluster at different locations and at different times supports the possibility of a drifting filament at the PPM so that at times reentry is present on the surface but at other times the reentrant wavefront breaks through to the epicardium.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Vasos Coronários/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/fisiopatologia , Músculos Papilares/fisiopatologia , Pericárdio/fisiopatologia , Fibrilação Ventricular/fisiopatologia , Animais , Suínos
19.
Heart Rhythm ; 5(11): 1599-606, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18984539

RESUMO

BACKGROUND: Knowledge of the shock potential gradient (nablaV) and postshock activation is limited to internal defibrillation of short-duration ventricular fibrillation (SDVF). OBJECTIVE: The purpose of this study was to determine these variables after external defibrillation of long-duration VF (LDVF). METHODS: In six pigs, 115-20 plunge needles with three to six electrodes each were inserted to record throughout both ventricles. After the chest was closed, the biphasic defibrillation threshold (DFT) was determined after 20 seconds of SDVF with external defibrillation pads. After 7 minutes of LDVF, defibrillation shocks that were less than or equal to the SDVF DFT strength were given. RESULTS: For DFT shocks (1632 +/- 429 V), the maximum minus minimum ventricular voltage (160 +/- 100 V) was 9.8% of the shock voltage. Maximum cardiac nablaV (28.7 +/- 17 V/cm) was 4.7 +/- 2.0 times the minimum nablaV (6.2 +/- 3.5 V/cm). Although LDVF did not increase the DFT in five of the six pigs, it significantly lengthened the time to earliest postshock activation following defibrillation (1.6 +/- 2.2 seconds for SDVF and 4.9 +/- 4.3 seconds for LDVF). After LDVF, 1.3 +/- 0.8 episodes of spontaneous refibrillation occurred per animal, but there was no refibrillation after SDVF. CONCLUSION: Compared with previous studies of internal defibrillation, during external defibrillation much less of the shock voltage appears across the heart and the shock field is much more even; however, the minimum nablaV is similar. Compared with external defibrillation of SDVF, the biphasic external DFT for LDVF is not increased; however, time to earliest postshock activation triples. Refibrillation is common after LDVF but not after SDVF in these normal hearts, indicating that LDVF by itself can cause refibrillation without requiring preexisting heart disease.


Assuntos
Cardioversão Elétrica , Potenciais da Membrana/fisiologia , Fibrilação Ventricular/fisiopatologia , Fibrilação Ventricular/terapia , Animais , Mapeamento Potencial de Superfície Corporal , Suínos , Fatores de Tempo
20.
Am J Physiol Heart Circ Physiol ; 295(2): H883-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18586887

RESUMO

Endocardial mapping has suggested that Purkinje fibers may play a role in the maintenance of long-duration ventricular fibrillation (LDVF). To determine the influence of Purkinje fibers on LDVF, we chemically ablated the Purkinje system with Lugol solution and recorded endocardial and transmural activation during LDVF. Dog hearts were isolated and perfused, and the ventricular endocardium was exposed and treated with Lugol solution (n = 6) or normal Tyrode solution as a control (n = 6). The left anterior papillary muscle endocardium was mapped with a 504-electrode (21 x 24) plaque with electrodes spaced 1 mm apart. Transmural activation was recorded with a six-electrode plunge needle on each side of the plaque. Ventricular fibrillation (VF) was induced, and perfusion was halted. LDVF spontaneously terminated sooner in Lugol-ablated hearts than in control hearts (4.9 +/- 1.5 vs. 9.2 +/- 3.2 min, P = 0.01). After termination of VF, both the control and Lugol hearts were typically excitable, but only short episodes of VF could be reinduced. Endocardial activation rates were similar during the first 2 min of LDVF for Lugol-ablated and control hearts but were significantly slower in Lugol hearts by 3 min. In control hearts, the endocardium activated more rapidly than the epicardium after 4 min of LDVF with wave fronts propagating most often from the endocardium to epicardium. No difference in transmural activation rate or wave front direction was observed in Lugol hearts. Ablation of the subendocardium hastens VF spontaneous termination and alters VF activation sequences, suggesting that Purkinje fibers are important in the maintenance of LDVF.


Assuntos
Endocárdio/efeitos dos fármacos , Iodetos/farmacologia , Ramos Subendocárdicos/efeitos dos fármacos , Fibrilação Ventricular/fisiopatologia , Potenciais de Ação , Animais , Mapeamento Potencial de Superfície Corporal , Estimulação Cardíaca Artificial , Modelos Animais de Doenças , Cães , Endocárdio/fisiopatologia , Técnicas In Vitro , Ramos Subendocárdicos/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...