Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 56(16): 2381-2398.e6, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34428401

RESUMO

Congenital abnormalities of the kidney and urinary tract are among the most common birth defects, affecting 3% of newborns. The human kidney forms around a million nephrons from a pool of nephron progenitors over a 30-week period of development. To establish a framework for human nephrogenesis, we spatially resolved a stereotypical process by which equipotent nephron progenitors generate a nephron anlage, then applied data-driven approaches to construct three-dimensional protein maps on anatomical models of the nephrogenic program. Single-cell RNA sequencing identified progenitor states, which were spatially mapped to the nephron anatomy, enabling the generation of functional gene networks predicting interactions within and between nephron cell types. Network mining identified known developmental disease genes and predicted targets of interest. The spatially resolved nephrogenic program made available through the Human Nephrogenesis Atlas (https://sckidney.flatironinstitute.org/) will facilitate an understanding of kidney development and disease and enhance efforts to generate new kidney structures.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Néfrons/metabolismo , Transcriptoma , Animais , Humanos , Camundongos , Néfrons/citologia , Néfrons/embriologia , Proteoma/genética , Proteoma/metabolismo , RNA-Seq , Análise de Célula Única
2.
Nat Commun ; 12(1): 3641, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131121

RESUMO

Current kidney organoids model development and diseases of the nephron but not the contiguous epithelial network of the kidney's collecting duct (CD) system. Here, we report the generation of an expandable, 3D branching ureteric bud (UB) organoid culture model that can be derived from primary UB progenitors from mouse and human fetal kidneys, or generated de novo from human pluripotent stem cells. In chemically-defined culture conditions, UB organoids generate CD organoids, with differentiated principal and intercalated cells adopting spatial assemblies reflective of the adult kidney's collecting system. Aggregating 3D-cultured nephron progenitor cells with UB organoids in vitro results in a reiterative process of branching morphogenesis and nephron induction, similar to kidney development. Applying an efficient gene editing strategy to remove RET activity, we demonstrate genetically modified UB organoids can model congenital anomalies of kidney and urinary tract. Taken together, these platforms will facilitate an enhanced understanding of development, regeneration and diseases of the mammalian collecting duct system.


Assuntos
Túbulos Renais Coletores/citologia , Rim/citologia , Rim/crescimento & desenvolvimento , Organogênese/fisiologia , Organoides/citologia , Organoides/crescimento & desenvolvimento , Ureter , Sistema Urinário/citologia , Adulto , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Rim/embriologia , Túbulos Renais Coletores/embriologia , Masculino , Camundongos , Morfogênese , Néfrons , Organogênese/genética , Organoides/embriologia , Células-Tronco Pluripotentes/citologia , Sistema Urinário/embriologia , Sistema Urinário/crescimento & desenvolvimento
4.
Dev Cell ; 51(3): 399-413.e7, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689386

RESUMO

Chronic kidney disease affects 10% of the population with notable differences in ethnic and sex-related susceptibility to kidney injury and disease. Kidney dysfunction leads to significant morbidity and mortality and chronic disease in other organ systems. A mouse-organ-centered understanding underlies rapid progress in human disease modeling and cellular approaches to repair damaged systems. To enhance an understanding of the mammalian kidney, we combined anatomy-guided single-cell RNA sequencing of the adult male and female mouse kidney with in situ expression studies and cell lineage tracing. These studies reveal cell diversity and marked sex differences, distinct organization and cell composition of nephrons dependent on the time of nephron specification, and lineage convergence, in which contiguous functionally related cell types are specified from nephron and collecting system progenitor populations. A searchable database, Kidney Cell Explorer (https://cello.shinyapps.io/kidneycellexplorer/), enables gene-cell relationships to be viewed in the anatomical framework of the kidney.


Assuntos
Linhagem da Célula , Rim/citologia , Caracteres Sexuais , Análise de Célula Única , Animais , Células Epiteliais/citologia , Feminino , Rim/anatomia & histologia , Masculino , Camundongos , Néfrons/citologia , Fatores de Tempo
5.
iScience ; 20: 402-414, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31622881

RESUMO

Analysis of kidney disease-causing genes and pathology resulting from systemic diseases highlight the importance of the kidney's filtering system, the renal corpuscles. To elucidate the developmental processes that establish the renal corpuscle, we performed single-nucleus droplet-based sequencing of the human fetal kidney. This enabled the identification of nephron, interstitial, and vascular cell types that together generate the renal corpuscles. Trajectory analysis identified transient developmental gene expression, predicting precursors or mature podocytes express FBLN2, BMP4, or NTN4, in conjunction with recruitment, differentiation, and modeling of vascular and mesangial cell types into a functional filter. In vitro studies provide evidence that these factors exhibit angiogenic or mesangial recruiting and inductive properties consistent with a key organizing role for podocyte precursors in kidney development. Together these studies define a spatiotemporal developmental program for the primary filtration unit of the human kidney and provide novel insights into cell interactions regulating co-assembly of constituent cell types.

6.
Dev Cell ; 50(1): 102-116.e6, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31265809

RESUMO

The renal corpuscle of the kidney comprises a glomerular vasculature embraced by podocytes and supported by mesangial myofibroblasts, which ensure plasma filtration at the podocyte-generated slit diaphragm. With a spectrum of podocyte-expressed gene mutations causing chronic disease, an enhanced understanding of podocyte development and function to create relevant in vitro podocyte models is a clinical imperative. To characterize podocyte development, scRNA-seq was performed on human fetal kidneys, identifying distinct transcriptional signatures accompanying the differentiation of functional podocytes from progenitors. Interestingly, organoid-generated podocytes exhibited highly similar, progressive transcriptional profiles despite an absence of the vasculature, although abnormal gene expression was pinpointed in late podocytes. On transplantation into mice, organoid-derived podocytes recruited the host vasculature and partially corrected transcriptional profiles. Thus, human podocyte development is mostly intrinsically regulated and vascular interactions refine maturation. These studies support the application of organoid-derived podocytes to model disease and to restore or replace normal kidney functions.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/citologia , Glomérulos Renais/citologia , Organoides/citologia , Podócitos/citologia , Análise de Célula Única/métodos , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Glomérulos Renais/metabolismo , Organoides/metabolismo , Podócitos/metabolismo
7.
Dev Cell ; 45(5): 651-660.e4, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29870722

RESUMO

Mammalian nephrons arise from a limited nephron progenitor pool through a reiterative inductive process extending over days (mouse) or weeks (human) of kidney development. Here, we present evidence that human nephron patterning reflects a time-dependent process of recruitment of mesenchymal progenitors into an epithelial nephron precursor. Progressive recruitment predicted from high-resolution image analysis and three-dimensional reconstruction of human nephrogenesis was confirmed through direct visualization and cell fate analysis of mouse kidney organ cultures. Single-cell RNA sequencing of the human nephrogenic niche provided molecular insights into these early patterning processes and predicted developmental trajectories adopted by nephron progenitor cells in forming segment-specific domains of the human nephron. The temporal-recruitment model for nephron polarity and patterning suggested by direct analysis of human kidney development provides a framework for integrating signaling pathways driving mammalian nephrogenesis.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais/citologia , Néfrons/citologia , Organogênese/fisiologia , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Néfrons/metabolismo , Transdução de Sinais , Análise de Célula Única , Fatores de Tempo
8.
J Am Soc Nephrol ; 29(3): 806-824, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29449449

RESUMO

Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2+ nephron progenitor cells (NPCs) and Foxd1+ interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1, were readily detected within SIX2+ NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2+ NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2, are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs.


Assuntos
Córtex Renal/embriologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Néfrons/embriologia , Animais , Proteínas Reguladoras de Apoptose , Diferenciação Celular , Linhagem da Célula , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Proteína Meis1/genética , Proteína Meis1/metabolismo , Néfrons/anatomia & histologia , Néfrons/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Am Soc Nephrol ; 29(3): 785-805, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29449453

RESUMO

Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database (www.gudmap.org) together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species.


Assuntos
Rim/embriologia , Rim/metabolismo , Organogênese , Ureter/embriologia , Animais , Diferenciação Celular , Imunofluorescência , Perfilação da Expressão Gênica , Idade Gestacional , Técnicas Histológicas , Humanos , Hibridização In Situ , Rim/anatomia & histologia , Camundongos , Néfrons/embriologia , Néfrons/metabolismo , RNA/análise , Ureter/metabolismo
10.
PLoS Genet ; 14(1): e1007181, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377931

RESUMO

Nephron progenitor number determines nephron endowment; a reduced nephron count is linked to the onset of kidney disease. Several transcriptional regulators including Six2, Wt1, Osr1, Sall1, Eya1, Pax2, and Hox11 paralogues are required for specification and/or maintenance of nephron progenitors. However, little is known about the regulatory intersection of these players. Here, we have mapped nephron progenitor-specific transcriptional networks of Six2, Hoxd11, Osr1, and Wt1. We identified 373 multi-factor associated 'regulatory hotspots' around genes closely associated with progenitor programs. To examine their functional significance, we deleted 'hotspot' enhancer elements for Six2 and Wnt4. Removal of the distal enhancer for Six2 leads to a ~40% reduction in Six2 expression. When combined with a Six2 null allele, progeny display a premature depletion of nephron progenitors. Loss of the Wnt4 enhancer led to a significant reduction of Wnt4 expression in renal vesicles and a mildly hypoplastic kidney, a phenotype also enhanced in combination with a Wnt4 null mutation. To explore the regulatory landscape that supports proper target gene expression, we performed CTCF ChIP-seq to identify insulator-boundary regions. One such putative boundary lies between the Six2 and Six3 loci. Evidence for the functional significance of this boundary was obtained by deep sequencing of the radiation-induced Brachyrrhine (Br) mutant allele. We identified an inversion of the Six2/Six3 locus around the CTCF-bound boundary, removing Six2 from its distal enhancer regulation, but placed next to Six3 enhancer elements which support ectopic Six2 expression in the lens where Six3 is normally expressed. Six3 is now predicted to fall under control of the Six2 distal enhancer. Consistent with this view, we observed ectopic Six3 in nephron progenitors. 4C-seq supports the model for Six2 distal enhancer interactions in wild-type and Br/+ mouse kidneys. Together, these data expand our view of the regulatory genome and regulatory landscape underpinning mammalian nephrogenesis.


Assuntos
Diferenciação Celular/genética , Redes Reguladoras de Genes , Néfrons/embriologia , Organogênese/genética , Células-Tronco/fisiologia , Fatores de Transcrição/fisiologia , Animais , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Proteína Wnt4/genética , Proteína Wnt4/fisiologia
12.
Nat Commun ; 5: 5583, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25428693

RESUMO

Haematopoietic stem cells (HSCs) derive from haemogenic endothelial cells of the primitive dorsal aorta (DA) during vertebrate embryogenesis. The molecular mechanisms governing this unique endothelial to haematopoietic transition remain unclear. Here, we demonstrate a novel requirement for fibroblast growth factor (FGF) signalling in HSC emergence. This requirement is non-cell-autonomous, and acts within the somite to bridge the Wnt and Notch signalling pathways. We previously demonstrated that Wnt16 regulates the somitic expression of two Notch ligands, deltaC (dlc) and deltaD (dld), whose combined function is required for HSC fate. How Wnt16 connects to Notch function has remained an open question. Our current studies demonstrate that FGF signalling, via FGF receptor 4 (Fgfr4), mediates a signal-transduction pathway between Wnt16 and Dlc, but not Dld, to regulate HSC specification. Our findings demonstrate that FGF signalling acts as a key molecular relay within the developmental HSC niche to instruct HSC fate.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
13.
Cell ; 159(5): 1070-1085, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25416946

RESUMO

Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNF? activates the Notch and NF-?B signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNF?, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais , Animais , Embrião não Mamífero/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Receptores Notch/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/metabolismo
14.
EMBO J ; 33(20): 2363-73, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25230933

RESUMO

Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non-cell-autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Diferenciação Celular , Hemangioblastos/citologia , Hemangioblastos/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Receptor Notch1/genética , Receptor Notch3 , Receptores Notch/genética , Transdução de Sinais , Somitos/citologia , Somitos/embriologia , Somitos/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
Nature ; 512(7514): 319-23, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25119047

RESUMO

Notch signalling plays a key role in the generation of haematopoietic stem cells (HSCs) during vertebrate development and requires intimate contact between signal-emitting and signal-receiving cells, although little is known regarding when, where and how these intercellular events occur. We previously reported that the somitic Notch ligands, Dlc and Dld, are essential for HSC specification. It has remained unclear, however, how these somitic requirements are connected to the later emergence of HSCs from the dorsal aorta. Here we show in zebrafish that Notch signalling establishes HSC fate as their shared vascular precursors migrate across the ventral face of the somite and that junctional adhesion molecules (JAMs) mediate this required Notch signal transduction. HSC precursors express jam1a (also known as f11r) and migrate axially across the ventral somite, where Jam2a and the Notch ligands Dlc and Dld are expressed. Despite no alteration in the expression of Notch ligand or receptor genes, loss of function of jam1a led to loss of Notch signalling and loss of HSCs. Enforced activation of Notch in shared vascular precursors rescued HSCs in jam1a or jam2a deficient embryos. Together, these results indicate that Jam1a-Jam2a interactions facilitate the transduction of requisite Notch signals from the somite to the precursors of HSCs, and that these events occur well before formation of the dorsal aorta.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Molécula A de Adesão Juncional/metabolismo , Molécula B de Adesão Juncional/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Aorta/citologia , Aorta/crescimento & desenvolvimento , Aorta/metabolismo , Diferenciação Celular , Movimento Celular , Molécula A de Adesão Juncional/genética , Molécula B de Adesão Juncional/genética , Fenótipo , Receptores de Superfície Celular/genética , Somitos/citologia , Somitos/embriologia , Somitos/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
16.
Nature ; 474(7350): 220-4, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21654806

RESUMO

Haematopoietic stem cells (HSCs) are a self-renewing population of cells that continuously replenish all blood and immune cells during the lifetime of an individual. HSCs are used clinically to treat a wide array of diseases, including acute leukaemias and congenital blood disorders, but obtaining suitable numbers of cells and finding immune-compatible donors remain serious problems. These difficulties have led to an interest in the conversion of embryonic stem cells or induced pluripotent stem cells into HSCs, which is not possible using current methodologies. To accomplish this goal, it is critical to understand the native mechanisms involved in the specification of HSCs during embryonic development. Here we demonstrate in zebrafish that Wnt16 controls a novel genetic regulatory network required for HSC specification. Non-canonical signalling by Wnt16 is required for somitic expression of the Notch ligands deltaC (dlc) and deltaD (dld), and these ligands are, in turn, required for the establishment of definitive haematopoiesis. Notch signalling downstream of Dlc and Dld is earlier than, and distinct from, known cell-autonomous requirements for Notch, strongly suggesting that novel Notch-dependent relay signal(s) induce the first HSCs in parallel to other established pathways. Our results demonstrate that somite-specific gene expression is required for the production of haemogenic endothelium.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Somitos/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Linhagem da Célula , Hematopoese , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Somitos/citologia , Proteínas Wnt/deficiência , Proteínas Wnt/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
17.
Development ; 135(10): 1853-62, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18417622

RESUMO

Development of the vertebrate blood lineages is complex, with multiple waves of hematopoietic precursors arising in different embryonic locations. Monopotent, or primitive, precursors first give rise to embryonic macrophages or erythrocytes. Multipotent, or definitive, precursors are subsequently generated to produce the adult hematopoietic lineages. In both the zebrafish and the mouse, the first definitive precursors are committed erythromyeloid progenitors (EMPs) that lack lymphoid differentiation potential. We have previously shown that zebrafish EMPs arise in the posterior blood island independently from hematopoietic stem cells (HSCs). In this report, we demonstrate that a fourth wave of hematopoietic precursors arises slightly later in the zebrafish aorta/gonad/mesonephros (AGM) equivalent. We have identified and prospectively isolated these cells by CD41 (itga2b) and cmyb expression. Unlike EMPs, CD41(+) AGM cells colonize the thymus to generate rag2(+) T lymphocyte precursors. Timelapse imaging and lineage tracing analyses demonstrate that AGM-derived precursors use a previously undescribed migration pathway along the pronephric tubules to initiate adult hematopoiesis in the developing kidney, the teleostean equivalent of mammalian bone marrow. Finally, we have analyzed the gene expression profiles of EMPs and AGM precursors to better understand the molecular cues that pattern the first definitive hematopoietic cells in the embryo. Together, these studies suggest that expression of CD41 and cmyb marks nascent HSCs in the zebrafish AGM, and provide the means to further dissect HSC generation and function in the early vertebrate embryo.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Mesonefro/citologia , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/embriologia , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
Development ; 134(23): 4147-56, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17959717

RESUMO

Shifting sites of blood cell production during development is common across widely divergent phyla. In zebrafish, like other vertebrates, hematopoietic development has been roughly divided into two waves, termed primitive and definitive. Primitive hematopoiesis is characterized by the generation of embryonic erythrocytes in the intermediate cell mass and a distinct population of macrophages that arises from cephalic mesoderm. Based on previous gene expression studies, definitive hematopoiesis has been suggested to begin with the generation of presumptive hematopoietic stem cells (HSCs) along the dorsal aorta that express c-myb and runx1. Here we show, using a combination of gene expression analyses, prospective isolation approaches, transplantation, and in vivo lineage-tracing experiments, that definitive hematopoiesis initiates through committed erythromyeloid progenitors (EMPs) in the posterior blood island (PBI) that arise independently of HSCs. EMPs isolated by coexpression of fluorescent transgenes driven by the lmo2 and gata1 promoters exhibit an immature, blastic morphology and express only erythroid and myeloid genes. Transplanted EMPs home to the PBI, show limited proliferative potential, and do not seed subsequent hematopoietic sites such as the thymus or pronephros. In vivo fate-mapping studies similarly demonstrate that EMPs possess only transient proliferative potential, with differentiated progeny remaining largely within caudal hematopoietic tissue. Additional fate mapping of mesodermal derivatives in mid-somitogenesis embryos suggests that EMPs are born directly in the PBI. These studies provide phenotypic and functional analyses of the first hematopoietic progenitors in the zebrafish embryo and demonstrate that definitive hematopoiesis proceeds through two distinct waves during embryonic development.


Assuntos
Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Células Precursoras Eritroides/citologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Células Sanguíneas/citologia , Células Sanguíneas/fisiologia , Transplante de Células , Cruzamentos Genéticos , Desenvolvimento Embrionário , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Hematopoese/genética , Hibridização in Situ Fluorescente , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...