Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1386, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932091

RESUMO

InGaN-based micro-light-emitting diodes have a strong potential as a crucial building block for next-generation displays. However, small-size pixels suffer from efficiency degradations, which increase the power consumption of the display. We demonstrate strategies for epitaxial structure engineering carefully considering the quantum barrier layer and electron blocking layer to alleviate efficiency degradations in low current injection regime by reducing the lateral diffusion of injected carriers via reducing the tunneling rate of electrons through the barrier layer and balanced carrier injection. As a result, the fabricated micro-light-emitting diodes show a high external quantum efficiency of 3.00% at 0.1 A/cm2 for the pixel size of 10 × 10 µm2 and a negligible Jmax EQE shift during size reduction, which is challenging due to the non-radiative recombination at the sidewall. Furthermore, we verify that our epitaxy strategies can result in the relaxation of self-heating of the micro-light-emitting diodes, where the average pixel temperature was effectively reduced.

2.
Nano Lett ; 23(2): 451-461, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36637103

RESUMO

The coming of the big-data era brought a need for power-efficient computing that cannot be realized in the Von Neumann architecture. Neuromorphic computing which is motivated by the human brain can greatly reduce power consumption through matrix multiplication, and a device that mimics a human synapse plays an important role. However, many synaptic devices suffer from limited linearity and symmetry without using incremental step pulse programming (ISPP). In this work, we demonstrated a charge-trap flash (CTF)-based synaptic transistor using trap-level engineered Al2O3/Ta2O5/Al2O3 gate stack for successful neuromorphic computing. This novel gate stack provided precise control of the conductance with more than 6 bits. We chose the appropriate bias for highly linear and symmetric modulation of conductance and realized it with very short (25 ns) identical pulses at low voltage, resulting in low power consumption and high reliability. Finally, we achieved high learning accuracy in the training of 60000 MNIST images.

3.
Nanoscale Adv ; 4(19): 4114-4121, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36285215

RESUMO

HfO2-based ferroelectric (FE) materials have emerged as a promising material for non-volatile memory applications because of remanent polarization, scalability of thickness below 10 nm, and compatibility with complementary metal-oxide-semiconductor technology. However, in the metal/FE/insulator/semiconductor, it is difficult to improve switching voltage (V sw), endurance, and retention properties due to the interfacial layer (IL), which inevitably grows during the fabrication. Here, we proposed and demonstrated oxygen scavenging to reduce the IL thickness in an HfZrO x -based capacitor and the thinner IL was confirmed by cross-sectional transmission electron microscopy. V sw of a capacitor with scavenging decreased by 18% and the same P r could be obtained at a lower voltage than a capacitor without scavenging. In addition, excellent endurance properties up to 106 cycles were achieved. We believe oxygen scavenging has great potential for future HfZrO x -based memory device applications.

4.
Opt Express ; 29(12): 18037-18058, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154072

RESUMO

In this paper, we systematically investigated tailoring bolometric properties of a proposed heat-sensitive TiOx/Ti/TiOx tri-layer film for a waveguide-based bolometer, which can play a significant role as an on-chip detector operating in the mid-infrared wavelength range for the integrated optical gas sensors on Ge-on-insulator (Ge-OI) platform. As a proof-of-concept, bolometric test devices with a TiOx single-layer and TiOx/Ti/TiOx tri-layer films were fabricated by varying the layer thickness and thermal treatment condition. Comprehensive characterization was examined by the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses in the prepared films to fully understand the microstructure and interfacial properties and the effects of thermal treatment. Quantitative measurements of the temperature- and time-dependent resistance variations were conducted to deduce the minimum detectable change in temperature (ΔTmin) of the prepared films. Furthermore, based on these experimentally obtained results, limit-of-detection (LoD) for the carbon dioxide gas sensing was estimated to demonstrate the feasibility of the proposed waveguide-based bolometer with the TiOx/Ti/TiOx tri-layer film as an on-chip detector on the Ge-OI platform. It was found that the LoD can reach ∼3.25 ppm and/or even lower with the ΔTmin of 11.64 mK in the device with the TiOx/Ti/TiOx (47/6/47 nm) tri-layer film vacuum-annealed at 400 °C for 15 min, which shows great enhancement of ∼7.7 times lower value compared to the best case of TiOx single-layer films. Our theoretical and experimental demonstration for tailoring bolometric properties of a TiOx/Ti/TiOx tri-layer film provides fairly useful insight on how to improve LoD in the integrated optical gas sensor with the bolometer as an on-chip detector.

5.
Nanotechnology ; 31(37): 375702, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32492662

RESUMO

Herein, we reveal extraordinary enhancements in the photoresponsivities of tin sulfide (SnxSy) grown on SiO2/Si wafers through post-phase transformations induced by electron beam irradiation (EBI) and crystallization. Amorphous SnxSy thin films were formed by room-temperature sputtering, and as-deposited films were subsequently transformed into hexagonal SnS2 and orthorhombic SnS phases by EBI at 600 and 800 V respectively, for only one minute. The use of a low-energy electron beam was sufficient to fabricate a SnxSy photodetector, with no additional heating required. Less than 10 nm thick SnxSy films with well-defined layer structures and stable surface morphologies were obtained through EBI at 600 and 800 V. The resulting phase-controlled SnS thin-film photodetector prepared using 800 V-EBI exhibited a 40 000-fold increase in photoresponsivity; when illuminated by a 450 nm light source, the active SnS-layer-containing photodetector demonstrated a photoresponsivity of 33.2 mA W-1.

6.
ACS Appl Mater Interfaces ; 12(18): 20645-20652, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32281367

RESUMO

Two-dimensional molybdenum disulfide (MoS2) has emerged as a promising material for optoelectronic applications because of its superior electrical and optical properties. However, the difficulty in synthesizing large-scale MoS2 films has been recognized as a bottleneck in uniform and reproducible device fabrication and performance. Here, we proposed a radio-frequency magnetron sputter system, and post-treatments of electron beam irradiation and sulfurization to obtain large-scale continuous and high-quality multilayer MoS2 films. Large-area uniformity was confirmed by no deviation of electrical performance in fabricated MoS2 thin-film transistors (TFTs) with an average on/off ratio of 103 and a transconductance of 0.67 nS. Especially, the photoresponsivity of our MoS2 TFT reached 3.7 A W-1, which is a dramatic improvement over that of a previously reported multilayer MoS2 TFT (0.1 A W-1) because of the photogating effect induced by the formation of trap states in the band gap. Finally, we organized a 4 × 4 MoS2 phototransistor array with high photosensitivity, linearity, and uniformity for light detection, which demonstrates the great potential of 2D MoS2 for future-oriented optoelectronic devices.

7.
Sci Rep ; 7(1): 3874, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634333

RESUMO

We synthesised a crystalline MoS2 film from as-sputtered amorphous film by applying an electron beam irradiation (EBI) process. A collimated electron beam (60 mm dia.) with an energy of 1 kV was irradiated for only 1 min to achieve crystallisation without an additional heating process. After the EBI process, we observed a two-dimensional layered structure of MoS2 about 4 nm thick and with a hexagonal atomic arrangement on the surface. A stoichiometric MoS2 film was confirmed to grow well on SiO2/Si substrates and include partial oxidation of Mo. In our experimental configuration, EBI on an atomically thin MoS2 layer stimulated the transformation from a thermodynamically unstable amorphous structure to a stable crystalline nature with a nanometer grain size. We employed a Monte Carlo simulation to calculate the penetration depth of electrons into the MoS2 film and investigated the atomic rearrangement of the amorphous MoS2 structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...