Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38612446

RESUMO

Camellia is an important plant genus that includes well-known species such as C. sinensis, C. oleifera, and C. japonica. The C. sinensis cultivar 'Sangmok', one of Korea's standard types of tea landraces, is a small evergreen tree or shrub. Genome annotation has shown that Korean tea plants have special and unique benefits and superior components, such as catechin. The genome of Camellia sinensis cultivar 'Sangmok' was assembled on the chromosome level, with a length of 2678.62 Mbp and GC content of 38.16%. Further, 15 chromosome-scale scaffolds comprising 82.43% of the assembly (BUSCO completeness, 94.3%) were identified. Analysis of 68,151 protein-coding genes showed an average of 5.003 exons per gene. Among 82,481 coding sequences, the majority (99.06%) were annotated by Uniprot/Swiss-Prot. Further analysis revealed that 'Sangmok' is closely related to C. sinensis, with a divergence time of 60 million years ago. A total of 3336 exclusive gene families in 'Sangmok' were revealed by gene ontology analysis to play roles in auxin transport and cellular response mechanisms. By comparing these exclusive genes with 551 similar catechin genes, 17 'Sangmok'-specific catechin genes were identified by qRT-PCR, including those involved in phytoalexin biosynthesis and related to cytochrome P450. The 'Sangmok' genome exhibited distinctive genes compared to those of related species. This comprehensive genomic investigation enhances our understanding of the genetic architecture of 'Sangmok' and its specialized functions. The findings contribute valuable insights into the evolutionary and functional aspects of this plant species.


Assuntos
Camellia sinensis , Catequina , Humanos , Metabolismo Secundário , Éxons , Cromossomos Humanos Par 15 , Camellia sinensis/genética , Chá
2.
Front Plant Sci ; 15: 1301526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384760

RESUMO

Astragalus membranaceus is a medicinal plant mainly used in East Asia and contains abundant secondary metabolites. Despite the importance of this plant, the available genomic and genetic information is still limited. De novo transcriptome construction is recognized as an essential method for transcriptome research when reference genome information is incomplete. In this study, we constructed three individual transcriptome sets (unigene sets) for detailed analysis of the phenylpropanoid biosynthesis pathway, a major metabolite of A. membranaceus. Set-1 was a circular consensus sequence (CCS) generated using PacBio sequencing (PacBio-seq). Set-2 consisted of hybridized assembled unigenes with Illumina sequencing (Illumina-seq) reads and PacBio CCS using rnaSPAdes. Set-3 unigenes were assembled from Illumina-seq reads using the Trinity software. Construction of multiple unigene sets provides several advantages for transcriptome analysis. First, it provides an appropriate expression filtering threshold for assembly-based unigenes: a threshold transcripts per million (TPM) ≥ 5 removed more than 88% of assembly-based unigenes, which were mostly short and low-expressing unigenes. Second, assembly-based unigenes compensated for the incomplete length of PacBio CCSs: the ends of the 5`/3` untranslated regions of phenylpropanoid-related unigenes derived from set-1 were incomplete, which suggests that PacBio CCSs are unlikely to be full-length transcripts. Third, more isoform unigenes could be obtained from multiple unigene sets; isoform unigenes missing in Set-1 were detected in set-2 and set-3. Finally, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that phenylpropanoid biosynthesis and carbohydrate metabolism were highly activated in A. membranaceus roots. Various sequencing technologies and assemblers have been developed for de novo transcriptome analysis. However, no technique is perfect for de novo transcriptome analysis, suggesting the need to construct multiple unigene sets. This method enables efficient transcript filtering and detection of longer and more diverse transcripts.

3.
Genes (Basel) ; 14(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37628648

RESUMO

Campanula carpatica is an ornamental flowering plant belonging to the family Campanulaceae. The complete chloroplast genome of C. carpatica was obtained using Illumina HiSeq X and Oxford Nanopore (Nanopore GridION) platforms. The chloroplast genome exhibited a typical circular structure with a total length of 169,341 bp, comprising a large single-copy region of 102,323 bp, a small single-copy region of 7744 bp, and a pair of inverted repeats (IRa/IRb) of 29,637 bp each. Out of a total 120 genes, 76 were protein-coding genes, 36 were transfer RNA genes, and eight were ribosomal RNA genes. The genomic characteristics of C. carpatica are similar to those of other Campanula species in terms of repetitive sequences, sequence divergence, and contraction/expansion events in the inverted repeat regions. A phylogenetic analysis of 63 shared genes in 16 plant species revealed that Campanula zangezura is the closest relative of C. carpatica. Phylogenetic analysis indicated that C. carpatica was within the Campanula clade, and C. pallida occupied the outermost position of that clade.


Assuntos
Campanulaceae , Genoma de Cloroplastos , Magnoliopsida , Filogenia , Campanulaceae/genética , Genômica
4.
Front Plant Sci ; 14: 1183406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469771

RESUMO

The family Schisandraceae is a basal angiosperm plant group distributed in East and Southeast Asia and includes many medicinal plant species such as Schisandra chinensis. In this study, mitochondrial genomes (mitogenomes) of two species, Schisandra repanda and Kadsura japonica, in the family were characterized through de novo assembly using sequencing data obtained with Oxford Nanopore and Illumina sequencing technologies. The mitogenomes of S. repanda were assembled into one circular contig (571,107 bp) and four linear contigs (10,898-607,430 bp), with a total of 60 genes: 38 protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The mitogenomes of K. japonica were assembled into five circular contigs (211,474-973,503 bp) and three linear contigs (8,010-72,712 bp), with a total of 66 genes: 44 PCGs, 19 tRNA genes, and 3 rRNA genes. The mitogenomes of the two species had complex structural features with high repeat numbers and chloroplast-derived sequences, as observed in other plant mitogenomes. Phylogenetic analysis based on PCGs revealed the taxonomical relationships of S. repanda and K. japonica with other species from Schisandraceae. Finally, molecular markers were developed to distinguish between S. repanda, K. japonica, and S. chinensis on the basis of InDel polymorphisms present in the mitogenomes. The mitogenomes of S. repanda and K. japonica will be valuable resources for molecular and taxonomic studies of plant species that belong to the family Schisandraceae.

5.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047506

RESUMO

Platycodon grandiflorum belongs to the Campanulaceae family and is an important medicinal and food plant in East Asia. However, on the whole, the genome evolution of P. grandiflorum and the molecular basis of its major biochemical pathways are poorly understood. We reported a chromosome-scale genome assembly of P. grandiflorum based on a hybrid method using Oxford Nanopore Technologies, Illumina sequences, and high-throughput chromosome conformation capture (Hi-C) analysis. The assembled genome was finalized as 574 Mb, containing 41,355 protein-coding genes, and the genome completeness was assessed as 97.6% using a Benchmarking Universal Single-Copy Orthologs analysis. The P. grandiflorum genome comprises nine pseudo-chromosomes with 56.9% repeat sequences, and the transcriptome analysis revealed an expansion of the 14 beta-amylin genes related to triterpenoid saponin biosynthesis. Our findings provide an understanding of P. grandiflorum genome evolution and enable genomic-assisted breeding for the mass production of important components such as triterpenoid saponins.


Assuntos
Codonopsis , Platycodon , Saponinas , Triterpenos , Platycodon/genética , Platycodon/química , Saponinas/genética , Saponinas/química , Triterpenos/química , Melhoramento Vegetal , Cromossomos , República da Coreia , Raízes de Plantas/química
6.
Front Genet ; 14: 1100819, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816041

RESUMO

Codonopsis lanceolata (2n = 2x = 16) belongs to the Campanulaceae family and is a valuable medicinal and vegetable plant primarily found in East Asia. Several studies have demonstrated its excellent pharmacological effects, for example in bronchial treatment. However, genomic information of C. lanceolata is scarce, hindering studies on crop improvement of the species. Here, we report a high-quality chromosome-level genome assembly of C. lanceolata based on a hybrid method using Nanopore long-read, Illumina short-read, and Hi-C data. The assembled genome was completed as 1,273 Mb (84.5% of the estimated genome size), containing eight pseudo-chromosomes, ranging from 101.3 to 184.3 Mb. The genome comprised of 71.3% repeat sequences and 46,005 protein-coding genes, of which 85.7% genes were functionally annotated. Completeness of the assembled genome and genes was assessed to be 97.5% and 90.4%, respectively, by Benchmarking Universal Single-Copy Orthologs analysis. Phylogenetic and synteny analysis revealed that C. lanceolata was closely related to Platycodon grandiflorus in the Campanulaceae family. Gene family evolution revealed significant expansion of related genes involved in saponin biosynthesis in the C. lanceolata genome. This is the first reference genome reported for C. lanceolata. The genomic data produced in this study will provide essential information for further research to improve this medicinal plant and will broaden the understanding of the Campanulaceae family.

7.
Genes (Basel) ; 15(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38254948

RESUMO

Adenophora triphylla is an important medicinal and food plant found in East Asia. This plant is rich in secondary metabolites such as triterpenoid saponin, and its leaves can develop into different types, such as round and linear, depending on the origin of germination even within the same species. Despite this, few studies have comprehensively characterized the development processes of different leaf types and triterpenoid saponin pathways in this plant. Herein, we provide the first report of a high-quality genome assembly of A. triphylla based on a combination of Oxford Nanopore Technologies and Illumina sequencing methods. Its genome size was estimated to be 2.6 Gb, and the assembled genome finalized as 2.48 Gb, containing 57,729 protein-coding genes. Genome completeness was assessed as 95.6% using the Benchmarking Universal Single-Copy Orthologs score. The evolutionary divergence of A. triphylla was investigated using the genomes of five plant species, including two other species in the Campanulaceae family. The species A. triphylla diverged approximately 51-118 million years ago from the other four plants, and 579 expanded/contracted gene families were clustered in the Gene Ontology terms. The expansion of the ß-amyrin synthase (bAS) gene, a key enzyme in the triterpenoid saponin pathway, was identified in the A. triphylla genome. Furthermore, transcriptome analysis of the two leaf types revealed differences in the activity of starch, sucrose, unsaturated fatty acid pathways, and oxidoreductase enzymes. The heat and endoplasmic reticulum pathways related to plant stress were active in the development of round type leaf, while an enhancement of pyrimidine metabolism related to cell development was confirmed in the development of the linear type leaf. This study provides insight into the evolution of bAS genes and the development of different leaf types in A. triphylla.


Assuntos
Campanulaceae , Saponinas , Triterpenos , Humanos , Japão , Ásia Oriental
8.
BMC Genomics ; 23(1): 17, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34996357

RESUMO

BACKGROUND: Schisandra chinensis, an ancient member of the most basal angiosperm lineage which is known as the ANITA, is a fruit-bearing vine with the pharmacological effects of a multidrug system, such as antioxidant, anti-inflammatory, cardioprotective, neuroprotective, anti-osteoporosis effects. Its major bioactive compound is represented by lignans such as schisandrin. Molecular characterization of lignan biosynthesis in S. chinensis is of great importance for improving the production of this class of active compound. However, the biosynthetic mechanism of schisandrin remains largely unknown. RESULTS: To understand the potential key catalytic steps and their regulation of schisandrin biosynthesis, we generated genome-wide transcriptome data from three different tissues of S. chinensis cultivar Cheongsoon, including leaf, root, and fruit, via long- and short-read sequencing technologies. A total of 132,856 assembled transcripts were generated with an average length of 1.9 kb and high assembly completeness. Overall, our data presented effective, accurate gene annotation in the prediction of functional pathways. In particular, the annotation revealed the abundance of transcripts related to phenylpropanoid biosynthesis. Remarkably, transcriptome profiling during fruit development of S. chinensis cultivar Cheongsoon revealed that the phenylpropanoid biosynthetic pathway, specific to coniferyl alcohol biosynthesis, showed a tendency to be upregulated at the postfruit development stage. Further the analysis also revealed that the pathway forms a transcriptional network with fruit ripening-related genes, especially the ABA signaling-related pathway. Finally, candidate unigenes homologous to isoeugenol synthase 1 (IGS1) and dirigent-like protein (DIR), which are subsequently activated by phenylpropanoid biosynthesis and thus catalyze key upstream steps in schisandrin biosynthesis, were identified. Their expression was increased at the postfruit development stage, suggesting that they may be involved in the regulation of schisandrin biosynthesis in S. chinensis. CONCLUSIONS: Our results provide new insights into the production and accumulation of schisandrin in S. chinensis berries and will be utilized as a valuable transcriptomic resource for improving the schisandrin content.


Assuntos
Lignanas , Schisandra , Antioxidantes , Frutas/química , Frutas/genética , Lignanas/análise , Transcriptoma
9.
Commun Biol ; 4(1): 900, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294872

RESUMO

Watermeal, Wolffia australiana, is the smallest known flowering monocot and is rich in protein. Despite its great potential as a biotech crop, basic research on Wolffia is in its infancy. Here, we generated the reference genome of a species of watermeal, W. australiana, and identified the genome-wide features that may contribute to its atypical anatomy and physiology, including the absence of roots, adaxial stomata development, and anaerobic life as a turion. In addition, we found evidence of extensive genome rearrangements that may underpin the specialized aquatic lifestyle of watermeal. Analysis of the gene inventory of this intriguing species helps explain the distinct characteristics of W. australiana and its unique evolutionary trajectory.


Assuntos
Araceae/anatomia & histologia , Araceae/fisiologia , Genoma de Planta , Características de História de Vida , Araceae/genética , Rearranjo Gênico , Filogenia
11.
Sci Rep ; 11(1): 8019, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850210

RESUMO

Bellflower is an edible ornamental gardening plant in Asia. For predicting the flower color in bellflower plants, a transcriptome-wide approach based on machine learning, transcriptome, and genotyping chip analyses was used to identify SNP markers. Six machine learning methods were deployed to explore the classification potential of the selected SNPs as features in two datasets, namely training (60 RNA-Seq samples) and validation (480 Fluidigm chip samples). SNP selection was performed in sequential order. Firstly, 96 SNPs were selected from the transcriptome-wide SNPs using the principal compound analysis (PCA). Then, 9 among 96 SNPs were later identified using the Random forest based feature selection method from the Fluidigm chip dataset. Among six machines, the random forest (RF) model produced higher classification performance than the other models. The 9 SNP marker candidates selected for classifying the flower color classification were verified using the genomic DNA PCR with Sanger sequencing. Our results suggest that this methodology could be used for future selection of breeding traits even though the plant accessions are highly heterogeneous.


Assuntos
Aprendizado de Máquina , Platycodon , Polimorfismo de Nucleotídeo Único , Genótipo , Transcriptoma
13.
Mitochondrial DNA B Resour ; 6(1): 82-83, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33521275

RESUMO

Adenophora triphylla (A. triphylla) is an important oriental herb belonging to the Campanulaceae family. A. triphylla complete chloroplast genome is composed of 239,431 bp, which form a large single-copy region (LSC, 178,906 bp), a small single-copy region (SSC, 55,819 bp), and 2 inverted repeats (IRs, 2,353 bp). There are 108 genes annotated, including 74 protein-coding genes, 4 ribosomal RNA genes, and 30 transfer RNA genes. Phylogeny indicates that A. triphylla was belong to Adenophora genus as a sister group and most closely related to Adenophora divaricate.

14.
Nat Commun ; 11(1): 5875, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208749

RESUMO

Senna tora is a widely used medicinal plant. Its health benefits have been attributed to the large quantity of anthraquinones, but how they are made in plants remains a mystery. To identify the genes responsible for plant anthraquinone biosynthesis, we reveal the genome sequence of S. tora at the chromosome level with 526 Mb (96%) assembled into 13 chromosomes. Comparison among related plant species shows that a chalcone synthase-like (CHS-L) gene family has lineage-specifically and rapidly expanded in S. tora. Combining genomics, transcriptomics, metabolomics, and biochemistry, we identify a CHS-L gene contributing to the biosynthesis of anthraquinones. The S. tora reference genome will accelerate the discovery of biologically active anthraquinone biosynthesis pathways in medicinal plants.


Assuntos
Antraquinonas/metabolismo , Genoma de Planta , Proteínas de Plantas/genética , Senna/metabolismo , Antraquinonas/química , Vias Biossintéticas , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Senna/química , Senna/genética
15.
Genes Genomics ; 42(11): 1311-1317, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32980993

RESUMO

BACKGROUND: Sequence variations such as single nucleotide polymorphisms are markers for genetic diseases and breeding. Therefore, identifying sequence variations is one of the main objectives of several genome projects. Although most genome project consortiums provide standard operation procedures for sequence variation detection methods, there may be differences in the results because of human selection or error. OBJECTIVE: To standardize the procedure for sequence variation detection and help researchers who are not formally trained in bioinformatics, we developed the NGS_SNPAnalyzer, a desktop software and fully automated graphical pipeline. METHODS: The NGS_SNPAnalyzer is implemented using JavaFX (version 1.8); therefore, it is not limited to any operating system (OS). The tools employed in the NGS_SNPAnalyzer were compiled on Microsoft Windows (version 7, 10) and Ubuntu Linux (version 16.04, 17.0.4). RESULTS: The NGS_SNPAnalyzer not only includes the functionalities for variant calling and annotation but also provides quality control, mapping, and filtering details to support all procedures from next-generation sequencing (NGS) data to variant visualization. It can be executed using pre-set pipelines and options and customized via user-specified options. Additionally, the NGS_SNPAnalyzer provides a user-friendly graphical interface and can be installed on any OS that supports JAVA. CONCLUSIONS: Although there are several pipelines and visualization tools available for NGS data analysis, we developed the NGS_SNPAnalyzer to provide the user with an easy-to-use interface. The benchmark test results indicate that the NGS_SNPAnayzer achieves better performance than other open source tools.


Assuntos
Biologia Computacional/métodos , Doenças Genéticas Inatas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Cruzamento , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
16.
Hortic Res ; 7: 112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637140

RESUMO

Triterpenoid saponins (TSs) are common plant defense phytochemicals with potential pharmaceutical properties. Platycodon grandiflorus (Campanulaceae) has been traditionally used to treat bronchitis and asthma in East Asia. The oleanane-type TSs, platycosides, are a major component of the P. grandiflorus root extract. Recent studies show that platycosides exhibit anti-inflammatory, antiobesity, anticancer, antiviral, and antiallergy properties. However, the evolutionary history of platycoside biosynthesis genes remains unknown. In this study, we sequenced the genome of P. grandiflorus and investigated the genes involved in platycoside biosynthesis. The draft genome of P. grandiflorus is 680.1 Mb long and contains 40,017 protein-coding genes. Genomic analysis revealed that the CYP716 family genes play a major role in platycoside oxidation. The CYP716 gene family of P. grandiflorus was much larger than that of other Asterid species. Orthologous gene annotation also revealed the expansion of ß-amyrin synthases (bASs) in P. grandiflorus, which was confirmed by tissue-specific gene expression. In these expanded gene families, we identified key genes showing preferential expression in roots and association with platycoside biosynthesis. In addition, whole-genome bisulfite sequencing showed that CYP716 and bAS genes are hypomethylated in P. grandiflorus, suggesting that epigenetic modification of these two gene families affects platycoside biosynthesis. Thus whole-genome, transcriptome, and methylome data of P. grandiflorus provide novel insights into the regulation of platycoside biosynthesis by CYP716 and bAS gene families.

17.
Front Plant Sci ; 11: 630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528499

RESUMO

Coix lacryma-jobi, also called adlay or Job's tears, is an annual herbal plant belonging to the Poaceae family that has been cultivated as a cereal and medicinal crop in Asia. Despite its importance, however, genomic resources for better understanding this plant species at the molecular level and informing improved breeding strategies remain limited. To address this, we generated a draft genome of the C. lacryma-jobi variety ma-yuen (soft-shelled adlay) Korean cultivar, Johyun, by de novo assembly, using PacBio and Illumina sequencing data. A total of 3,362 scaffold sequences, 1.28 Gb in length, were assembled, representing 82.1% of the estimated genome size (1.56 Gb). Genome completeness was confirmed by the presence of 91.4% of the BUSCO angiosperm genes and mapping ratio of 98.3% of Illumina paired-end reads. We found that approximately 77.0% of the genome is occupied by repeat sequences, most of which are Gypsy and Copia-type retrotransposons, and evidence-based genome annotation predicts 39,574 protein-coding genes, 85.5% of which were functionally annotated. We further predict that soft-shelled adlay diverged from a common ancestor with sorghum 9.0-11.2 MYA. Transcriptome profiling revealed 3,988 genes that are differentially expressed in seeds relative to other tissues, of which 1,470 genes were strongly up-regulated in seeds and the most enriched Gene Ontology terms were assigned to carbohydrate and protein metabolism. In addition, we identified 76 storage protein genes including 18 seed-specific coixin genes and 13 candidate genes involved in biosynthesis of benzoxazinoids (BXs) including coixol, a unique BX compound found in C. lacryma-jobi species. The characterization of those genes can further our understanding of unique traits of soft-shelled adlay, such as high seed protein content and medicinal compound biosynthesis. Taken together, our genome sequence data will provide a valuable resource for molecular breeding and pharmacological study of this plant species.

18.
PLoS One ; 15(5): e0225564, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32380515

RESUMO

Senna tora is an annual herb with rich source of anthraquinones that have tremendous pharmacological properties. However, there is little mention of genetic information for this species, especially regarding the biosynthetic pathways of anthraquinones. To understand the key genes and regulatory mechanism of anthraquinone biosynthesis pathways, we performed spatial and temporal transcriptome sequencing of S. tora using short RNA sequencing (RNA-Seq) and long-read isoform sequencing (Iso-Seq) technologies, and generated two unigene sets composed of 118,635 and 39,364, respectively. A comprehensive functional annotation and classification with multiple public databases identified array of genes involved in major secondary metabolite biosynthesis pathways and important transcription factor (TF) families (MYB, MYB-related, AP2/ERF, C2C2-YABBY, and bHLH). Differential expression analysis indicated that the expression level of genes involved in anthraquinone biosynthetic pathway regulates differently depending on the degree of tissues and seeds development. Furthermore, we identified that the amount of anthraquinone compounds were greater in late seeds than early ones. In conclusion, these results provide a rich resource for understanding the anthraquinone metabolism in S. tora.


Assuntos
Antraquinonas/metabolismo , Sementes/genética , Extrato de Senna/metabolismo , Senna/genética , Senna/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA de Plantas/genética , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética
19.
Sci Rep ; 10(1): 6112, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273595

RESUMO

The transfer of ancestral plastid genomes into mitochondrial genomes to generate mitochondrial plastid DNA (MTPT) is known to occur in plants, but its impacts on mitochondrial genome complexity and the potential for causing a false-positive DNA barcoding paradox have been underestimated. Here, we assembled the organelle genomes of Cynanchum wilfordii and C. auriculatum, which are indigenous medicinal herbs in Korea and China, respectively. In both species, it is estimated that 35% of the ancestral plastid genomes were transferred to mitochondrial genomes over the past 10 million years and remain conserved in these genomes. Some plastid barcoding markers co-amplified the conserved MTPTs and caused a barcoding paradox, resulting in mis-authentication of botanical ingredients and/or taxonomic mis-positioning. We identified dynamic and lineage-specific MTPTs that have contributed to mitochondrial genome complexity and might cause a putative barcoding paradox across 81 plant species. We suggest that a DNA barcoding guidelines should be developed involving the use of multiple markers to help regulate economically motivated adulteration.


Assuntos
Cynanchum/genética , Código de Barras de DNA Taxonômico/normas , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Cynanchum/classificação , Código de Barras de DNA Taxonômico/métodos , Evolução Molecular , Filogenia
20.
Front Genet ; 11: 240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256527

RESUMO

Highly nutritious rice production will be benefited with the improvement of amino acid content (AAC) and protein content (PC). The identification of quantitative trait loci (QTLs) associated with the PC and AAC of rice grains could provide a basis for improving the nutritional value of rice grains. Here, we conducted QTL analyses using recombinant inbred lines from the cross between indica (Milyang 23 or M23) and japonica (Tong 88-7 or T887) rice varieties, afterward employing genotyping-by-sequencing to obtain a high-density genetic map. A total of 17 and 3 QTLs were detected for AAC and PC, respectively. Among them, two QTLs associated with more than 10 AACs, qAAC6.1 and qAAC7.1, were identified for the first time in this study. Each favorable allele that increased the AAC of the two QTLs was derived from M23 and T887, respectively. Allelic combination of qAAC6.1 M23 and qAAC7.1T887 showed significantly higher content of associated amino acids (AAs) than other allelic combinations. Near-isogenic line (NIL) possessing qAAC7.1T887 with M23 genetic background had significantly higher AACs than both parents. These results indicate that the pyramiding of QTLs would be useful in developing brown rice with a high AA and protein content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...