RESUMO
Abstract Introduction: Serum level of high-mobility group box 1 protein is reportedly correlated with the severity of obstructive sleep apnea. Objective: We tried to evaluate the possibility of using the serum high-mobility group box 1 protein level as a biologic marker in obstructive sleep apnea patients. Methods: We generated a chronic intermittent hypoxia murine model that reflected human obstructive sleep apnea. Obstructive sleep apnea patients who underwent polysomnography were prospectively enrolled. Serum samples were obtained from mice and obstructive sleep apnea patients, and the serum high-mobility group box1 protein level was measured by enzyme-linked immunosorbent assay. Results: Serum high-mobility group box 1 protein level was 56.16 ± 30.33 ng/mL in chronic intermittent hypoxia and 18.63 ± 6.20 ng/mL in control mice (p<0.05). The mean apnea-hypopnea index and respiratory disturbance index values of enrolled obstructive sleep apnea patients were 50.35 ± 27.96 and 51.56 ± 28.53, respectively, and the mean serum high-mobility group box 1 protein level was 30.13 ± 19.97 ng/mL. The apnea-hypopnea index and respiratory disturbance index were not significantly correlated with the serum high-mobility group box 1 protein level (p>0.05). Instead, this protein level was significantly correlated with lowest arterial oxygen concentration (SaO2) (p<0.05). Conclusion: High-mobility group box 1 protein may be involved in the pathogenesis of obstructive sleep apnea, and the possibility of this protein being a useful biologic marker in obstructive sleep apnea should be further evaluated.
Resumo Introdução: O nível sérico da proteína de alta mobilidade do grupo Box-1 está relacionado com a gravidade da apneia obstrutiva do sono. Objetivo: Avaliar o uso do nível sérico da proteína de alta mobilidade do grupo Box-1 como um marcador biológico em pacientes com apneia obstrutiva do sono. Método: Geramos um modelo murino de hipóxia intermitente crônica que imita a apneia obstrutiva do sono em humanos. Pacientes com apneia obstrutiva do sono que fizeram polissonografia foram incluídos prospectivamente. Amostras de soro foram obtidas de camundongos e pacientes com apneia obstrutiva do sono e o nível sérico da proteína de alta mobilidade do grupo Box-1 foi medido por enzyme-linked immunosorbent assay. Resultados: O nível sérico da proteína de alta mobilidade do grupo Box-1 foi 56,16 ± 30,33 ng/mL em hipóxia intermitente crônica e 18,63 ± 6,20 ng/mL em camundongos controle (p < 0,05). Os valores médios do índice de apneia-hipopneia e do índice de distúrbio respiratório nos pacientes com apneia obstrutiva do sono foram 50,35 ± 27,96 e 51,56 ± 28,53, respectivamente, e o nível médio da proteína de alta mobilidade do grupo Box-1 foi 30,13 ± 19,97 ng/mL. O índice de apneia-hipopneia e o índice de distúrbio respiratório não foram significantemente associados com o nível da proteína de alta mobilidade do grupo Box-1 p> 0,05). Em vez disso, esse nível de proteína foi significantemente associado com o valor mais baixo da concentração arterial de oxigênio (SaO2) (p <0,05). Conclusão: A proteína de alta mobilidade do grupo Box-1 pode estar envolvida na patogênese da apneia obstrutiva do sono e a possibilidade de que essa proteína possa ser um marcador biológico útil na apneia obstrutiva do sono deve ser avaliada mais detalhadamente.
RESUMO
INTRODUCTION: Serum level of high-mobility group box 1 protein is reportedly correlated with the severity of obstructive sleep apnea. OBJECTIVE: We tried to evaluate the possibility of using the serum high-mobility group box 1 protein level as a biologic marker in obstructive sleep apnea patients. METHODS: We generated a chronic intermittent hypoxia murine model that reflected human obstructive sleep apnea. Obstructive sleep apnea patients who underwent polysomnography were prospectively enrolled. Serum samples were obtained from mice and obstructive sleep apnea patients, and the serum high-mobility group box1 protein level was measured by enzyme-linked immunosorbent assay. RESULTS: Serum high-mobility group box 1 protein level was 56.16⯱â¯30.33â¯ng/mL in chronic intermittent hypoxia and 18.63⯱â¯6.20â¯ng/mL in control mice (pâ¯<â¯0.05). The mean apnea-hypopnea index and respiratory disturbance index values of enrolled obstructive sleep apnea patients were 50.35⯱â¯27.96 and 51.56⯱â¯28.53, respectively, and the mean serum high-mobility group box 1 protein level was 30.13⯱â¯19.97 ng/mL. The apnea-hypopnea index and respiratory disturbance index were not significantly correlated with the serum high-mobility group box 1 protein level (pâ¯>â¯0.05). Instead, this protein level was significantly correlated with lowest arterial oxygen concentration (SaO2) (pâ¯<â¯0.05). CONCLUSION: High-mobility group box 1 protein may be involved in the pathogenesis of obstructive sleep apnea, and the possibility of this protein being a useful biologic marker in obstructive sleep apnea should be further evaluated.
Assuntos
Apneia Obstrutiva do Sono , Humanos , Camundongos , Animais , Polissonografia , Hipóxia , BiomarcadoresRESUMO
The Amerindian group known as the Charrúas inhabited Uruguay at the timing of European colonial contact. Even though they were extinguished as an ethnic group as a result of a genocide, Charrúan heritage is part of the Uruguayan identity both culturally and genetically. While mitochondrial DNA studies have shown evidence of Amerindian ancestry in living Uruguayans, here we undertake whole-genome sequencing of 10 Uruguayan individuals with self-declared Charruan heritage. We detect chromosomal segments of Amerindian ancestry supporting the presence of indigenous genetic ancestry in living descendants. Specific haplotypes were found to be enriched in "Charrúas" and rare in the rest of the Amerindian groups studied. Some of these we interpret as the result of positive selection, as we identified selection signatures and they were located mostly within genes related to the infectivity of specific viruses. Historical records describe contacts of the Charrúas with other Amerindians, such as Guaraní, and patterns of genomic similarity observed here concur with genomic similarity between these groups. Less expected, we found a high genomic similarity of the Charrúas to Diaguita from Argentinian and Chile, which could be explained by geographically proximity. Finally, by fitting admixture models of Amerindian and European ancestry for the Uruguayan population, we were able to estimate the timing of the first pulse of admixture between European and Uruguayan indigenous peoples in approximately 1658 and the second migration pulse in 1683. Both dates roughly concurring with the Franciscan missions in 1662 and the foundation of the city of Colonia in 1680 by the Spanish.
RESUMO
BACKGROUND: Rare diseases are pathologies that affect less than 1 in 2000 people. They are difficult to diagnose due to their low frequency and their often highly heterogeneous symptoms. Rare diseases have in general a high impact on the quality of life and life expectancy of patients, which are in general children or young people. The advent of high-throughput sequencing techniques has improved diagnosis in several different areas, from pediatrics, achieving a diagnostic rate of 41% with whole genome sequencing (WGS) and 36% with whole exome sequencing, to neurology, achieving a diagnostic rate between 47 and 48.5% with WGS. This evidence has encouraged our group to pursue a molecular diagnosis using WGS for this and several other patients with rare diseases. RESULTS: We used whole genome sequencing to achieve a molecular diagnosis of a 7-year-old girl with a severe panvascular artery disease that remained for several years undiagnosed. We found a frameshift variant in one copy and a large deletion involving two exons in the other copy of a gene called YY1AP1. This gene is related to Grange syndrome, a recessive rare disease, whose symptoms include stenosis or occlusion of multiple arteries, congenital heart defects, brachydactyly, syndactyly, bone fragility, and learning disabilities. Bioinformatic analyses propose these mutations as the most likely cause of the disease, according to its frequency, in silico predictors, conservation analyses, and effect on the protein product. Additionally, we confirmed one mutation in each parent, supporting a compound heterozygous status in the child. CONCLUSIONS: In general, we think that this finding can contribute to the use of whole genome sequencing as a diagnosis tool of rare diseases, and in particular, it can enhance the set of known mutations associated with different diseases.
Assuntos
Arteriopatias Oclusivas/genética , Proteínas de Ciclo Celular/genética , Cardiopatias Congênitas/genética , Doenças Raras/genética , Fatores de Transcrição/genética , Arteriopatias Oclusivas/diagnóstico , Arteriopatias Oclusivas/patologia , Artérias/diagnóstico por imagem , Artérias/patologia , Criança , Feminino , Mutação da Fase de Leitura/genética , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/patologia , Homozigoto , Humanos , Linhagem , Doenças Raras/diagnóstico , Doenças Raras/patologia , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: To diagnose and treat respiratory allergic diseases, it is important to identify the specific allergens involved. Many differences exist between common inhalant allergens depending on the residential environment and demographic factors. This study aimed to compare common inhalant allergens between Koreans and non-Koreans according to their residential region, age, and sex. METHODS: This study evaluated 15,334 individuals who underwent serum tests for multiple allergen-specific immunoglobulin E at a tertiary academic medical center between January 2010 and December 2016. The individuals included 14,786 Koreans and 548 non-Koreans. The AdvanSure™ Allostation assay (LG Life Science, Korea) was used to test for 33 inhalant allergens. RESULTS: The house dust mite (HDM) was the most common allergen in both Koreans and non-Koreans, although the proportion of individuals with HDM sensitization was greater among Koreans. High sensitization rates for various pollen types were detected among Koreans in Gangwon region, whereas Japanese cedar pollen was unique among Koreans in Jeju region. Grass pollen and animal dander were relatively common among individuals from the Americas, whereas weed and grass pollen accounted for the 10 most common allergens for individuals from Central Asia. The total sensitization rate, sensitization to HDM, and sensitization to animal dander peaked among adolescents and young adults, then subsequently decreased with age. CONCLUSIONS: This large-scale study demonstrates that various regional and age-related differences exist in the allergen sensitization rates of Koreans and non-Koreans. These data could be useful for development of avoidance measures, immunotherapy for causative allergens, and policymaking regarding allergic diseases.
Assuntos
Alérgenos/imunologia , Hipersensibilidade/diagnóstico , Hipersensibilidade/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Ásia/epidemiologia , Criança , Pré-Escolar , Alérgenos Animais/imunologia , Demografia , Europa (Continente)/epidemiologia , Feminino , Humanos , Hipersensibilidade/sangue , Imunoglobulina E/sangue , Lactente , Masculino , Pessoa de Meia-Idade , América do Norte/epidemiologia , Oceania/epidemiologia , Pólen/imunologia , Pyroglyphidae/imunologia , Grupos Raciais , América do Sul/epidemiologia , Adulto JovemRESUMO
Pigeonpea (Cajanus cajan), a tropical grain legume with low input requirements, is expected to continue to have an important role in supplying food and nutritional security in developing countries in Asia, Africa and the tropical Americas. From whole-genome resequencing of 292 Cajanus accessions encompassing breeding lines, landraces and wild species, we characterize genome-wide variation. On the basis of a scan for selective sweeps, we find several genomic regions that were likely targets of domestication and breeding. Using genome-wide association analysis, we identify associations between several candidate genes and agronomically important traits. Candidate genes for these traits in pigeonpea have sequence similarity to genes functionally characterized in other plants for flowering time control, seed development and pod dehiscence. Our findings will allow acceleration of genetic gains for key traits to improve yield and sustainability in pigeonpea.