Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Materials (Basel) ; 13(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036469

RESUMO

A LiCoPO4-based high-voltage lithium-ion battery was fabricated in the format of a 1.2 Ah pouch cell that exhibited a highly stable cycle life at a cut-off voltage of 4.9 V. The high-voltage stability was achieved using a Fe-Cr-Si multi-ion-substituted LiCoPO4 cathode and lithium bis(fluorosulfonyl)imide in 1-methyl-1-propylpyrrolidinium bis(fluorosulfony)imide as the electrolyte. Due to the improved electrochemical stability at high voltage, the cell exhibited a stable capacity retention of 91% after 290 cycles without any gas evolution related to electrolyte decomposition at high voltage. In addition to improved cycling stability, the nominal 5 V LiCoPO4 pouch cell also exhibited excellent safety performance during a nail penetration safety test compared with a state-of-the-art lithium ion battery. Meanwhile, the thermal stabilities of the 1.2 Ah pouch cell as well as the delithiated LiCoPO4 were also studied by accelerating rate calorimetry (ARC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and in situ X-ray diffraction (XRD) analyses and reported.

3.
Sci Rep ; 8(1): 17575, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514866

RESUMO

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) using a focused ion-beam scanning electron microscope (FIB-SEM) is a promising and economical technique for lithium detection and quantification in battery materials because it overcomes the limitations with detecting low Li content by energy dispersive spectroscopy (EDS). In this work, an experimental calibration curve was produced, which to our best knowledge allowed for the first time, the quantification of lithium in standard nickel manganese cobalt oxide (NMC-532) cathodes using 20 nm resolution. The technique overcomes matrix effects and edges effects that makes quantification complex. This work shows the high potential of TOF-SIMS tool for analytical characterization of battery materials, and demonstrates its tremendous capabilities towards identification of various chemical or electrochemical phenomena in the cathodes via high-resolution ion distributions. Various phenomena in the ion distributions are also assessed, such as edge effects or measurement artifacts from real signal variations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...